Suppr超能文献

乙烯与植物营养生长和发育中的激素相互作用

Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

作者信息

Van de Poel Bram, Smet Dajo, Van Der Straeten Dominique

机构信息

Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium.

Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium

出版信息

Plant Physiol. 2015 Sep;169(1):61-72. doi: 10.1104/pp.15.00724. Epub 2015 Jul 31.

Abstract

Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.

摘要

乙烯是一种气态植物激素,很可能在陆地定殖之前的轮藻绿藻进化过程中成为一种功能性激素。从这个古老的起源开始,乙烯进化成为一种重要的生长调节剂,对无数植物发育过程至关重要。在营养生长中,乙烯似乎具有双重作用,即刺激和抑制生长,这取决于物种、组织、细胞类型、发育阶段、激素状态和环境条件。此外,乙烯信号传导和反应是与内部和外部信号相互作用的复杂网络的一部分。除了是根和茎生长控制的关键因素外,乙烯还能促进开花、果实成熟和脱落,以及叶片和花瓣的衰老和脱落,因此,它几乎在植物生命的每个阶段都发挥作用。最后但同样重要的是,与茉莉酸、水杨酸和脱落酸一起,乙烯在引导应激反应中很重要。

相似文献

1
Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.
Plant Physiol. 2015 Sep;169(1):61-72. doi: 10.1104/pp.15.00724. Epub 2015 Jul 31.
3
Hormonal interactions in the regulation of plant development.
Annu Rev Cell Dev Biol. 2012;28:463-87. doi: 10.1146/annurev-cellbio-101011-155741. Epub 2012 Jul 25.
5
Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress.
Plant Physiol. 2015 Sep;169(1):73-84. doi: 10.1104/pp.15.00663. Epub 2015 Aug 5.
6
Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission.
J Exp Bot. 2015 Apr;66(7):1707-19. doi: 10.1093/jxb/eru533. Epub 2015 Feb 22.
7
Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling.
Plant Physiol. 2015 Sep;169(1):32-41. doi: 10.1104/pp.15.00677. Epub 2015 Jun 23.
8
Complex Interplay of Hormonal Signals during Grape Berry Ripening.
Molecules. 2015 May 21;20(5):9326-43. doi: 10.3390/molecules20059326.
9
Ethylene hormone receptor action in Arabidopsis.
Bioessays. 2001 Jul;23(7):619-27. doi: 10.1002/bies.1087.
10
The central role of PhEIN2 in ethylene responses throughout plant development in petunia.
Plant Physiol. 2004 Oct;136(2):2900-12. doi: 10.1104/pp.104.046979. Epub 2004 Oct 1.

引用本文的文献

2
A review of soil waterlogging impacts, mechanisms, and adaptive strategies.
Front Plant Sci. 2025 Feb 13;16:1545912. doi: 10.3389/fpls.2025.1545912. eCollection 2025.
3
Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals.
Molecules. 2024 Nov 29;29(23):5671. doi: 10.3390/molecules29235671.
4
The RING-type E3 ligase RIE1 sustains leaf longevity by specifically targeting AtACS7 to fine-tune ethylene production in .
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2411271121. doi: 10.1073/pnas.2411271121. Epub 2024 Nov 20.
6
Ethylene: A Modulator of the Phytohormone-Mediated Insect Herbivory Network in Plants.
Insects. 2024 Jun 1;15(6):404. doi: 10.3390/insects15060404.
7
Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification.
Microorganisms. 2024 Mar 29;12(4):700. doi: 10.3390/microorganisms12040700.
8
Endoribonuclease DNE1 Promotes Ethylene Response by Modulating mRNA Processing in .
Int J Mol Sci. 2024 Feb 10;25(4):2138. doi: 10.3390/ijms25042138.
9
Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment.
Nat Plants. 2024 Feb;10(2):240-255. doi: 10.1038/s41477-023-01608-5. Epub 2024 Jan 26.

本文引用的文献

1
Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.
Plant Physiol. 2015 Sep;169(1):338-50. doi: 10.1104/pp.15.00415. Epub 2015 Jul 6.
2
Auxin inhibits expansion rate independently of cortical microtubules.
Trends Plant Sci. 2015 Aug;20(8):471-2. doi: 10.1016/j.tplants.2015.05.008. Epub 2015 Jun 1.
3
Ethylene-Mediated Regulation of A2-Type CYCLINs Modulates Hyponastic Growth in Arabidopsis.
Plant Physiol. 2015 Sep;169(1):194-208. doi: 10.1104/pp.15.00343. Epub 2015 Jun 3.
4
Strategies of seedlings to overcome their sessile nature: auxin in mobility control.
Front Plant Sci. 2015 Apr 14;6:218. doi: 10.3389/fpls.2015.00218. eCollection 2015.
5
Only in dying, life: programmed cell death during plant development.
Trends Plant Sci. 2015 Feb;20(2):102-13. doi: 10.1016/j.tplants.2014.10.003. Epub 2014 Nov 19.
6
Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules.
Nature. 2014 Dec 4;516(7529):90-3. doi: 10.1038/nature13889. Epub 2014 Nov 17.
7
Ethylene, a key factor in the regulation of seed dormancy.
Front Plant Sci. 2014 Oct 10;5:539. doi: 10.3389/fpls.2014.00539. eCollection 2014.
8
Hypocotyl adventitious root organogenesis differs from lateral root development.
Front Plant Sci. 2014 Sep 29;5:495. doi: 10.3389/fpls.2014.00495. eCollection 2014.
10
Root hairs.
Arabidopsis Book. 2014 Jun 25;12:e0172. doi: 10.1199/tab.0172. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验