Suppr超能文献

单元化支持在关系记忆任务上的持久表现和泛化:来自一个此前未被记录的发育性遗忘症病例的证据。

Unitization supports lasting performance and generalization on a relational memory task: Evidence from a previously undocumented developmental amnesic case.

作者信息

D'Angelo Maria C, Kacollja Arber, Rabin Jennifer S, Rosenbaum R Shayna, Ryan Jennifer D

机构信息

Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, Ontario, Canada M6A 2E1.

Rotman Research Institute, Baycrest, 3560 Bathurst Street, Toronto, Ontario, Canada M6A 2E1.

出版信息

Neuropsychologia. 2015 Oct;77:185-200. doi: 10.1016/j.neuropsychologia.2015.07.025. Epub 2015 Jul 29.

Abstract

Recently, the amnesic case D.A. was shown to circumvent his relational memory impairments, as observed in the transverse patterning (TP) task, using a self-generated unitization strategy, and such performance benefits were maintained over extended delays (Ryan et al., 2013). "Unitization" encourages fusing of distinct items, through an action, into a single unit from which the relations among the items may then be derived. Here, we provide the first documentation of the developmental amnesic case, N.C., who presents with relatively circumscribed lesions to the extended hippocampal system, and with impaired episodic memory. Despite impairments on standard versions of TP, N.C. benefited from unitization, showed evidence of transfer to novel stimuli, and maintained his performance over extended delays. These findings suggest that self-generation is not a requirement for the successful implementation of unitization, and further provides the first evidence of rapid transfer and long-lasting success of a learning strategy in a human amnesic case.

摘要

最近,失忆症患者D.A.被证明能够规避其在横向模式化(TP)任务中所表现出的关系记忆损伤,他采用了一种自我生成的单元化策略,并且这种表现优势在延长的延迟期内得以保持(瑞安等人,2013年)。“单元化”通过一种行为促使不同的项目融合为一个单一单元,进而从中推导出项目之间的关系。在此,我们首次记录了发育性失忆症患者N.C.的情况,他的扩展海马体系统存在相对局限的损伤,且情景记忆受损。尽管在标准版本的TP任务中表现受损,但N.C.从单元化中受益,表现出向新刺激转移的证据,并且在延长的延迟期内保持了他的表现。这些发现表明,自我生成并非成功实施单元化的必要条件,并且进一步首次证明了在人类失忆症病例中一种学习策略的快速转移和长期成功。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验