Suppr超能文献

在III期临床试验中使用中央统计监测进行数据驱动的风险识别。

Data-driven risk identification in phase III clinical trials using central statistical monitoring.

作者信息

Timmermans Catherine, Venet David, Burzykowski Tomasz

机构信息

Institut de Statistique, Biostatistique et Sciences Actuarielles (ISBA), Université Catholique de Louvain, Voie du Roman Pays, 20, 1348, Louvain-la-Neuve, Belgium.

Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA), Université Libre de Bruxelles, Brussels, Belgium.

出版信息

Int J Clin Oncol. 2016 Feb;21(1):38-45. doi: 10.1007/s10147-015-0877-5. Epub 2015 Aug 2.

Abstract

Our interest lies in quality control for clinical trials, in the context of risk-based monitoring (RBM). We specifically study the use of central statistical monitoring (CSM) to support RBM. Under an RBM paradigm, we claim that CSM has a key role to play in identifying the "risks to the most critical data elements and processes" that will drive targeted oversight. In order to support this claim, we first see how to characterize the risks that may affect clinical trials. We then discuss how CSM can be understood as a tool for providing a set of data-driven key risk indicators (KRIs), which help to organize adaptive targeted monitoring. Several case studies are provided where issues in a clinical trial have been identified thanks to targeted investigation after the identification of a risk using CSM. Using CSM to build data-driven KRIs helps to identify different kinds of issues in clinical trials. This ability is directly linked with the exhaustiveness of the CSM approach and its flexibility in the definition of the risks that are searched for when identifying the KRIs. In practice, a CSM assessment of the clinical database seems essential to ensure data quality. The atypical data patterns found in some centers and variables are seen as KRIs under a RBM approach. Targeted monitoring or data management queries can be used to confirm whether the KRIs point to an actual issue or not.

摘要

我们关注的是基于风险监测(RBM)背景下的临床试验质量控制。我们特别研究使用中央统计监测(CSM)来支持RBM。在RBM范式下,我们认为CSM在识别将推动有针对性监督的“对最关键数据元素和流程的风险”方面可发挥关键作用。为了支持这一观点,我们首先探讨如何描述可能影响临床试验的风险。然后我们讨论如何将CSM理解为一种工具,用于提供一组数据驱动的关键风险指标(KRI),这些指标有助于组织适应性的有针对性监测。提供了几个案例研究,在这些案例中,通过使用CSM识别风险后进行有针对性的调查,发现了临床试验中的问题。使用CSM构建数据驱动的KRI有助于识别临床试验中的不同类型问题。这种能力与CSM方法的详尽性及其在定义识别KRI时所搜索风险方面的灵活性直接相关。在实践中,对临床数据库进行CSM评估似乎对于确保数据质量至关重要。在RBM方法下,在某些中心和变量中发现的非典型数据模式被视为KRI。有针对性的监测或数据管理查询可用于确认KRI是否指向实际问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验