Department of Physics, Banaras Hindu University , Varanasi 221005, India.
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México , Cuernavaca, Morelos 62210, Mexico.
ACS Appl Mater Interfaces. 2015 Aug 26;7(33):18231-9. doi: 10.1021/acsami.5b06350. Epub 2015 Aug 11.
We synthesized the Eu(TTA)3Phen complex and present herein a detailed study of its photophysics. The investigations encompass samples dispersed in poly(vinyl alcohol) and in ethanol in order to explore the versatile applicability of these lanthanide-based materials. Details upon the interaction between Eu, TTA, and the Phen ligands are revealed by Fourier transform infrared and UV-visible absorption, complemented by steady state and temporally resolved emission studies, which provide evidence of an efficient energy transfer from the organic ligands to the central Eu(3+) ion. The material produces efficient emission even under sunlight exposure, a feature pointing toward suitability for luminescent solar concentrators and UV light sensing, which is demonstrated for intensities as low as 200 nW/cm(2). The paper further promotes the complex's capability to be used as luminescence-based temperature sensor demonstrated by the considerable emission intensity changes of ∼4.0% per K in the temperature range of 50-305 K and ∼7% per K in the temeperature range 305-340 K. Finally, increasing the optical excitation causes both spontaneous emission amplification and emission peak narrowing in the Eu(TTA)3Phen complex dispersed in poly(vinyl alcohol) - features indicative of stimulated emission. These findings in conjunction with the fairly large stimulated emission cross-section of 4.29 × 10(-20) cm(2) demonstrate that the Eu(TTA)3Phen complex dispersed in poly(vinyl alcohol) could be a very promising material choice for lanthanide-polymer based laser architectures.
我们合成了 Eu(TTA)3Phen 配合物,并对其光物理性质进行了详细研究。研究涵盖了分散在聚乙烯醇和乙醇中的样品,以探索这些基于镧系元素的材料的多功能适用性。傅里叶变换红外和紫外-可见吸收研究揭示了 Eu、TTA 和 Phen 配体之间的相互作用细节,并用稳态和时间分辨发射研究进行了补充,这些研究提供了有机配体向中心 Eu(3+)离子有效能量转移的证据。即使在阳光照射下,该材料也能产生高效的发射,这一特性表明其适用于发光太阳能集中器和紫外光感测,其在低至 200 nW/cm(2)的强度下即可实现。本文进一步证明了该配合物可用作基于发光的温度传感器,在 50-305 K 温度范围内,发射强度变化约为 4.0%/K,在 305-340 K 温度范围内,发射强度变化约为 7%/K,其发射强度变化相当大。最后,在聚乙烯醇中分散的 Eu(TTA)3Phen 配合物中,随着光激发的增加,自发发射放大和发射峰变窄,这是受激辐射的特征。这些发现结合 Eu(TTA)3Phen 配合物在聚乙烯醇中分散时相当大的受激发射截面(4.29×10(-20) cm(2))表明,分散在聚乙烯醇中的 Eu(TTA)3Phen 配合物可能是基于镧系元素聚合物的激光结构的非常有前途的材料选择。