Lan Chuanjin, Pal Souvik, Li Zhen, Ma Yanbao
School of Engineering, University of California-Merced , Merced, California 95343, United States.
Division of Applied Mathematics, Brown University , Providence, Rhode Island 02912, United States.
Langmuir. 2015 Sep 8;31(35):9636-45. doi: 10.1021/acs.langmuir.5b02011. Epub 2015 Aug 24.
Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.
单细胞分析技术已发展成为一种有价值的生物分析工具,用于在基因组、蛋白质组和细胞水平上阐明细胞异质性。细胞操作是单细胞分析不可或缺的过程。数字微流控(DMF)是一个以高通量方式进行细胞操作和单细胞分析的重要平台。然而,到目前为止,DMF中单个细胞的操作尚未得到定量研究。在本文中,我们使用数值模拟研究了单个微粒与平面基底上液滴的相互作用。液滴由基底润湿性梯度产生的毛细力驱动。考虑到微粒的布朗运动,我们在这项数值研究中采用了多体耗散粒子动力学(MDPD),一种非晶格介观模拟技术。模拟了单个微粒与液滴的操作过程(包括拾取、运输和放下)。进行了参数研究,以研究液滴大小、润湿性梯度、微粒的润湿特性以及微粒与基底的摩擦系数对操作过程的影响。数值结果表明,拾取、运输和放下过程可以通过这些参数精确控制。基于数值结果,在数值模拟中展示了将疏水性微粒无陷阱地输送到基底上的目标位置。数值结果不仅提供了对微粒、液滴和基底之间相互作用的基本理解,还展示了一种在DMF设计中无陷阱固定单个疏水性微粒的新技术。最后,我们的数值方法还为DMF系统中微粒的操作提供了一个强大的设计和优化工具。