Tully Stephen, Choset Howie
IEEE Trans Biomed Eng. 2016 Feb;63(2):392-402. doi: 10.1109/TBME.2015.2461531. Epub 2015 Jul 28.
The objective of this paper is to introduce a probabilistic filtering approach to estimate the pose and internal shape of a highly flexible surgical snake robot during minimally invasive surgery.
Our approach renders a depiction of the robot that is registered to preoperatively reconstructed organ models to produce a 3-D visualization that can be used for surgical feedback. Our filtering method estimates the robot shape using an extended Kalman filter that fuses magnetic tracker data with kinematic models that define the motion of the robot. Using Lie derivative analysis, we show that this estimation problem is observable, and thus, the shape and configuration of the robot can be successfully recovered with a sufficient number of magnetic tracker measurements.
We validate this study with benchtop and in-vivo image-guidance experiments in which the surgical robot was driven along the epicardial surface of a porcine heart.
This paper introduces a filtering approach for shape estimation that can be used for image guidance during minimally invasive surgery.
The methods being introduced in this paper enable informative image guidance for highly articulated surgical robots, which benefits the advancement of robotic surgery.
本文的目的是介绍一种概率滤波方法,用于在微创手术期间估计高度灵活的手术蛇形机器人的位姿和内部形状。
我们的方法呈现了与术前重建的器官模型配准的机器人描绘,以生成可用于手术反馈的三维可视化。我们的滤波方法使用扩展卡尔曼滤波器估计机器人形状,该滤波器将磁跟踪器数据与定义机器人运动的运动学模型相融合。通过李导数分析,我们表明该估计问题是可观测的,因此,通过足够数量的磁跟踪器测量可以成功恢复机器人的形状和配置。
我们通过台式和体内图像引导实验验证了这项研究,其中手术机器人沿着猪心脏的心外膜表面驱动。
本文介绍了一种用于形状估计的滤波方法,可用于微创手术期间的图像引导。
本文介绍的方法为高度灵活的手术机器人提供了信息丰富的图像引导,这有利于机器人手术的发展。