Huang Gang, Du Xinchuan, Zhang Feifei, Yin Dongming, Wang Limin
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin (P. R. China).
University of Chinese Academy of Sciences, Beijing, 100049 (P. R. China).
Chemistry. 2015 Sep 28;21(40):14140-5. doi: 10.1002/chem.201500910. Epub 2015 Aug 6.
Binary metal oxides have been deemed as a promising class of electrode materials for high-performance lithium ion batteries owing to their higher conductivity and electrochemical activity than corresponding monometal oxides. Here, NiFe2O4 nanoplates consisting of nanosized building blocks have been successfully fabricated by a facile, large-scale NaCl and KCl molten-salt route, and the changes in the morphology of NiFe2O4 as a function of the molten-salt amount have been systemically investigated. The results indicate that the molten-salt amount mainly influences the diameter and thickness of the NiFe2O4 nanoplates as well as the morphology of the nanosized building blocks. Cyclic voltammetry (CV) and galvanostatic charge-discharge measurements have been conducted to evaluate the lithium storage properties of the NiFe2O4 nanoplates prepared with a Ni(NO3)2/Fe(NO3)3/KCl/NaCl molar ratio of 1:2:20:60. A high reversible capacity of 888 mAh g(-1) is delivered over 100 cycles at a current density of 100 mA g(-1). Even at a current density of 5000 mA g(-1) , the discharge capacity could still reach 173 mAh g(-1). Such excellent electrochemical performances of the NiFe2O4 nanoplates are contributed to the short Li(+) diffusion distance of the nanosized building blocks and the synergetic effect of the Ni(2+) and Fe(3+) ions.
二元金属氧化物因其比相应的单金属氧化物具有更高的导电性和电化学活性,被认为是一类有前景的高性能锂离子电池电极材料。在此,通过简便的大规模NaCl和KCl熔盐路线成功制备了由纳米尺寸结构单元组成的NiFe2O4纳米片,并系统研究了NiFe2O4形态随熔盐用量的变化。结果表明,熔盐用量主要影响NiFe2O4纳米片的直径和厚度以及纳米尺寸结构单元的形态。进行了循环伏安法(CV)和恒流充放电测量,以评估以1:2:20:60的Ni(NO3)2/Fe(NO3)3/KCl/NaCl摩尔比制备的NiFe2O4纳米片的锂存储性能。在100 mA g(-1)的电流密度下,100次循环中可逆容量高达888 mAh g(-1)。即使在5000 mA g(-1)的电流密度下,放电容量仍可达到173 mAh g(-1)。NiFe2O4纳米片如此优异的电化学性能归因于纳米尺寸结构单元的短Li(+)扩散距离以及Ni(2+)和Fe(3+)离子的协同效应。