Suppr超能文献

模糊集与模糊逻辑在感染监测及临床决策支持中的进展

Advances In Infection Surveillance and Clinical Decision Support With Fuzzy Sets and Fuzzy Logic.

作者信息

Koller Walter, de Bruin Jeroen S, Rappelsberger Andrea, Adlassnig Klaus-Peter

机构信息

Clinical Institute of Hospital Hygiene, Medical University of Vienna and Vienna General Hospital, Austria.

Section for Medical Expert and Knowledge-Based Systems, CeMSIIS, Medical University of Vienna, Austria.

出版信息

Stud Health Technol Inform. 2015;216:295-9.

Abstract

By the use of extended intelligent information technology tools for fully automated healthcare-associated infection (HAI) surveillance, clinicians can be informed and alerted about the emergence of infection-related conditions in their patients. Moni--a system for monitoring nosocomial infections in intensive care units for adult and neonatal patients--employs knowledge bases that were written with extensive use of fuzzy sets and fuzzy logic, allowing the inherent un-sharpness of clinical terms and the inherent uncertainty of clinical conclusions to be a part of Moni's output. Thus, linguistic as well as propositional uncertainty became a part of Moni, which can now report retrospectively on HAIs according to traditional crisp HAI surveillance definitions, as well as support clinical bedside work by more complex crisp and fuzzy alerts and reminders. This improved approach can bridge the gap between classical retrospective surveillance of HAIs and ongoing prospective clinical-decision-oriented HAI support.

摘要

通过使用扩展的智能信息技术工具进行全自动医疗相关感染(HAI)监测,可以让临床医生了解并警惕其患者中感染相关病症的出现。Moni——一个用于监测成人和新生儿重症监护病房医院感染的系统——采用了大量使用模糊集和模糊逻辑编写的知识库,使临床术语固有的不精确性和临床结论固有的不确定性成为Moni输出的一部分。因此,语言以及命题的不确定性成为了Moni的一部分,它现在可以根据传统的明确HAI监测定义对HAI进行回顾性报告,还可以通过更复杂的明确和模糊警报及提醒来支持床边临床工作。这种改进的方法可以弥合HAI经典回顾性监测与正在进行的前瞻性临床决策导向的HAI支持之间的差距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验