Suppr超能文献

受限搜索空间与非受限搜索空间:从挖掘大型日本数据库中获得的经验

Restricted Versus Unrestricted Search Space: Experience from Mining a Large Japanese Database.

作者信息

Nienhoff Hendrik, Huebner Ursula, Frey Andreas, Przysucha Mareike, Kimura Michio

机构信息

Health Informatics Research Group, Osnabrueck University of Applied Sciences, Germany.

Nuertingen-Geislingen University, Germany.

出版信息

Stud Health Technol Inform. 2015;216:1072.

Abstract

The aim of this study was to investigate whether standard Big Data mining methods lead to clinically useful results. An association analysis was performed using the apriori algorithm to discover associations among co-morbidities of diabetes patients. Selected data were further analyzed by using k-means clustering with age, long-term blood sugar and cholesterol values. The association analysis led to a multitude of trivial rules. Cluster analysis detected clusters of well and badly managed diabetes patients both belonging to different age groups. The study suggests the usage of cluster analysis on a restricted space to come to meaningful results.

摘要

本研究的目的是调查标准的大数据挖掘方法是否能产生临床有用的结果。使用先验算法进行关联分析,以发现糖尿病患者合并症之间的关联。通过对年龄、长期血糖和胆固醇值进行k均值聚类,对选定的数据进行进一步分析。关联分析产生了大量无足轻重的规则。聚类分析检测到管理良好和管理不善的糖尿病患者集群,他们分属于不同年龄组。该研究表明,在有限的范围内使用聚类分析可得出有意义的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验