Xu Hao, Majmudar Jaimeen D, Davda Dahvid, Ghanakota Phani, Kim Ki H, Carlson Heather A, Showalter Hollis D, Martin Brent R, Amidon Gordon L
Department of Medicinal Chemistry, College of Pharmacy, ‡Department of Pharmaceutical Sciences, College of Pharmacy, §Department of Chemistry, and ⊥Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States.
Mol Pharm. 2015 Sep 8;12(9):3399-407. doi: 10.1021/acs.molpharmaceut.5b00414. Epub 2015 Aug 17.
Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and preclinical development of ester prodrugs.
了解前药递送和激活的机制基础对于建立评估临床前动物模型和潜在药物-药物相互作用所必需的物种特异性前药敏感性至关重要。尽管前药方法已被广泛采用以增强药代动力学,但前药激活酶的功能注释既费力又常常未得到解决。基于活性的蛋白质谱分析(ABPP)描述了一种新兴的化学蛋白质组学方法,用于测定天然蛋白质组中机械相似的酶类中的活性位点占有率。丝氨酸水解酶家族与报告基团连接的氟代膦酸酯具有广泛的反应性,已证明其可提供一种基于机制的共价标记策略,以测定细胞丝氨酸酰胺酶、酯酶和硫酯酶的激活状态和活性位点占有率。在此,我们描述了一种改良的ABPP方法,该方法利用直接底物竞争来鉴定乙酯前药(流感神经氨酸酶抑制剂奥司他韦)的激活酶。底物竞争性ABPP分析确定羧酸酯酶1(CES1)为肠道细胞匀浆中奥司他韦的激活酶。饱和浓度的奥司他韦导致氟代膦酸酯使CES1失活的观察速率常数降低四倍。WWL50是一种已报道的小鼠CES1的氨基甲酸酯抑制剂,可阻断人细胞匀浆中的奥司他韦水解活性,证实CES1是人肝和肠道细胞系中奥司他韦的主要前药激活酶。相关的氨基甲酸酯抑制剂WWL79抑制小鼠而非人CES1,提供了一系列用于分析不同临床前模型中前药激活机制的探针。总体而言,我们提出了一种基于底物竞争活性的谱分析方法,用于广泛筛选候选前药水解酶,并概述了用于激活酶发现、酯前药设计和酯前药临床前开发的动力学参数。