Raschke Anja, Ibañez Carla, Ullrich Kristian Karsten, Anwer Muhammad Usman, Becker Sebastian, Glöckner Annemarie, Trenner Jana, Denk Kathrin, Saal Bernhard, Sun Xiaodong, Ni Min, Davis Seth Jon, Delker Carolin, Quint Marcel
Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany.
Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany.
BMC Plant Biol. 2015 Aug 14;15:197. doi: 10.1186/s12870-015-0566-6.
Perception and transduction of temperature changes result in altered growth enabling plants to adapt to increased ambient temperature. While PHYTOCHROME-INTERACTING FACTOR4 (PIF4) has been identified as a major ambient temperature signaling hub, its upstream regulation seems complex and is poorly understood. Here, we exploited natural variation for thermo-responsive growth in Arabidopsis thaliana using quantitative trait locus (QTL) analysis.
We identified GIRAFFE2.1, a major QTL explaining ~18 % of the phenotypic variation for temperature-induced hypocotyl elongation in the Bay-0 x Sha recombinant inbred line population. Transgenic complementation demonstrated that allelic variation in the circadian clock regulator EARLY FLOWERING3 (ELF3) is underlying this QTL. The source of variation could be allocated to a single nucleotide polymorphism in the ELF3 coding region, resulting in differential expression of PIF4 and its target genes, likely causing the observed natural variation in thermo-responsive growth.
In combination with other recent studies, this work establishes the role of ELF3 in the ambient temperature signaling network. Natural variation of ELF3-mediated gating of PIF4 expression during nightly growing periods seems to be affected by a coding sequence quantitative trait nucleotide that confers a selective advantage in certain environments. In addition, natural ELF3 alleles seem to differentially integrate temperature and photoperiod information to induce architectural changes. Thus, ELF3 emerges as an essential coordinator of growth and development in response to diverse environmental cues and implicates ELF3 as an important target of adaptation.
温度变化的感知和转导会导致植物生长改变,使其能够适应环境温度升高。虽然已确定光敏色素相互作用因子4(PIF4)是环境温度信号传导的主要枢纽,但其上游调控似乎很复杂,目前了解甚少。在这里,我们利用拟南芥热响应生长的自然变异,通过数量性状位点(QTL)分析进行研究。
我们鉴定出GIRAFFE2.1,这是一个主要的QTL,可解释Bay-0×Sha重组自交系群体中温度诱导的下胚轴伸长表型变异的约18%。转基因互补实验表明,生物钟调节因子早花3(ELF3)的等位基因变异是该QTL的基础。变异来源可归因于ELF3编码区的一个单核苷酸多态性,导致PIF4及其靶基因的差异表达,可能导致观察到的热响应生长的自然变异。
结合其他近期研究,这项工作确立了ELF3在环境温度信号网络中的作用。ELF3在夜间生长期间介导的PIF4表达调控的自然变异似乎受一个编码序列数量性状核苷酸的影响,该核苷酸在某些环境中赋予了选择优势。此外,天然ELF3等位基因似乎以不同方式整合温度和光周期信息以诱导结构变化。因此,ELF3成为响应多种环境线索的生长和发育的重要协调因子,并表明ELF3是适应的重要靶点。