Liang Shu, Kemelmacher-Shlizerman Ira, Shapiro Linda G
University of Washington, 185 West Stevens Way NE, WA 98105.
Proc Int Conf 3D Vis. 2014 Dec;2014:31-38. doi: 10.1109/3DV.2014.67.
We present an algorithm that takes a single frame of a person's face from a depth camera, e.g., Kinect, and produces a high-resolution 3D mesh of the input face. We leverage a dataset of 3D face meshes of 1204 distinct individuals ranging from age 3 to 40, captured in a neutral expression. We divide the input depth frame into semantically significant regions (eyes, nose, mouth, cheeks) and search the database for the best matching shape per region. We further combine the input depth frame with the matched database shapes into a single mesh that results in a highresolution shape of the input person. Our system is fully automatic and uses only depth data for matching, making it invariant to imaging conditions. We evaluate our results using ground truth shapes, as well as compare to state-of-the-art shape estimation methods. We demonstrate the robustness of our local matching approach with high-quality reconstruction of faces that fall outside of the dataset span, e.g., faces older than 40 years old, facial expressions, and different ethnicities.
我们提出了一种算法,该算法从深度相机(例如Kinect)获取人的单帧面部图像,并生成输入面部的高分辨率3D网格。我们利用了一个包含1204个不同个体(年龄从3岁到40岁)的3D面部网格数据集,这些图像均在中性表情下拍摄。我们将输入的深度帧划分为语义上重要的区域(眼睛、鼻子、嘴巴、脸颊),并在数据库中为每个区域搜索最佳匹配形状。我们进一步将输入的深度帧与匹配的数据库形状组合成一个单一的网格,从而得到输入人物的高分辨率形状。我们的系统是全自动的,并且仅使用深度数据进行匹配,这使得它不受成像条件的影响。我们使用真实形状评估结果,并与最先进的形状估计方法进行比较。我们通过对超出数据集范围的面部进行高质量重建,例如年龄大于40岁的面部、面部表情和不同种族的面部,展示了我们局部匹配方法的鲁棒性。