Garbelli R, de Bock F, Medici V, Rousset M C, Villani F, Boussadia B, Arango-Lievano M, Jeanneteau F, Daneman R, Bartolomei F, Marchi N
Clinical Epileptology and Experimental Neurophysiology, Department of Neurosurgery, Istituto Neurologico Besta, Milan, Italy.
Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, Montpellier (CNRS-INSERM), France.
Neuroscience. 2015 Oct 15;306:18-27. doi: 10.1016/j.neuroscience.2015.07.090. Epub 2015 Aug 15.
Neuro-vascular rearrangement occurs in brain disorders, including epilepsy. Platelet-derived growth factor receptor beta (PDGFRβ) is used as a marker of perivascular pericytes. Whether PDGFRβ(+) cell reorganization occurs in regions of neuro-vascular dysplasia associated with seizures is unknown.
We used brain specimens derived from epileptic subjects affected by intractable seizures associated with focal cortical dysplasia (FCD) or temporal lobe epilepsy with hippocampal sclerosis (TLE-HS). Tissues from cryptogenic epilepsy, non-sclerotic hippocampi or peritumoral were used for comparison. An in vivo rat model of neuro-vascular dysplasia was obtained by pre-natal exposure to methyl-axozy methanoic acid (MAM). Status epilepticus (SE) was induced in adult MAM rats by intraperitoneal pilocarpine. MAM tissues were also used to establish organotypic hippocampal cultures (OHC) to further assess pericytes positioning at the dysplastic microvasculature. PDGFRβ and its colocalization with RECA-1 or CD34 were used to segregate perivascular pericytes. PDGFRβ and NG2 or IBA1 colocalization were performed. Rat cortices and hippocampi were used for PDGFRβ western blot analysis.
Human FCD displayed the highest perivascular PDGFRβ immunoreactivity, indicating pericytes, and presence of ramified PDGFRβ(+) cells in the parenchyma and proximal to microvessels. Tissues deriving from human cryptogenic epilepsy displayed a similar pattern of immunoreactivity, although to a lesser extent compared to FCD. In TLE-HS, CD34 vascular proliferation was paralleled by increased perivascular PDGFRβ(+) pericytes, as compared to non-HS. Parenchymal PDGFRβ immunoreactivity co-localized with NG2 but was distinct from IBA1(+) microglia. In MAM rats, we found pericyte-vascular changes in regions characterized by neuronal heterotopias. PDGFRβ immunoreactivity was differentially distributed in the heterotopic and adjacent normal CA1 region. The use of MAM OHC revealed microvascular-pericyte dysplasia at the capillary tree lining the dentate gyrus (DG) molecular layer as compared to control OHC. Severe SE induced PDGFRβ(+) immunoreactivity mostly in the CA1 region of MAM rats.
Our descriptive study points to microvascular-pericyte changes in the epileptic pathology. The possible link between PDGFRβ(+) cells, neuro-vascular dysplasia and remodeling during seizures is discussed.
神经血管重排发生于包括癫痫在内的脑部疾病中。血小板衍生生长因子受体β(PDGFRβ)被用作血管周围周细胞的标志物。与癫痫发作相关的神经血管发育异常区域是否发生PDGFRβ(+)细胞重组尚不清楚。
我们使用了来自患有与局灶性皮质发育异常(FCD)相关的顽固性癫痫或伴有海马硬化的颞叶癫痫(TLE-HS)的癫痫患者的脑标本。来自隐源性癫痫、非硬化海马或肿瘤周围组织用于比较。通过产前暴露于甲基偶氮甲醇(MAM)获得神经血管发育异常的体内大鼠模型。成年MAM大鼠通过腹腔注射匹罗卡品诱导癫痫持续状态(SE)。MAM组织也用于建立器官型海马培养物(OHC),以进一步评估周细胞在发育异常的微血管系统中的定位。PDGFRβ及其与RECA-1或CD34的共定位用于区分血管周围周细胞。进行PDGFRβ与NG2或IBA1的共定位。大鼠皮质和海马用于PDGFRβ的蛋白质印迹分析。
人类FCD显示出最高的血管周围PDGFRβ免疫反应性,表明存在周细胞,并且在实质和微血管附近存在分支状PDGFRβ(+)细胞。来自人类隐源性癫痫的组织显示出类似的免疫反应模式,尽管与FCD相比程度较轻。在TLE-HS中,与非海马硬化相比,CD34血管增殖与血管周围PDGFRβ(+)周细胞增加并行。实质PDGFRβ免疫反应性与NG2共定位,但与IBA1(+)小胶质细胞不同。在MAM大鼠中,我们在以神经元异位为特征的区域发现了周细胞-血管变化。PDGFRβ免疫反应性在异位和相邻的正常CA1区域中分布不同。与对照OHC相比,使用MAM OHC显示齿状回(DG)分子层内衬的毛细血管树处存在微血管-周细胞发育异常。严重的SE主要在MAM大鼠的CA1区域诱导PDGFRβ(+)免疫反应性。
我们的描述性研究指出了癫痫病理学中的微血管-周细胞变化。讨论了PDGFRβ(+)细胞、神经血管发育异常和癫痫发作期间重塑之间的可能联系。