Suppr超能文献

大粒1的激活通过调节水稻中的生长素运输显著改善了籽粒大小。

Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.

作者信息

Liu Linchuan, Tong Hongning, Xiao Yunhua, Che Ronghui, Xu Fan, Hu Bin, Liang Chengzhen, Chu Jinfang, Li Jiayang, Chu Chengcai

机构信息

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11102-7. doi: 10.1073/pnas.1512748112. Epub 2015 Aug 17.

Abstract

Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

摘要

粒重是决定谷物产量的关键因素之一。然而,目前仍不清楚发育信号如何调控粒重。在此,我们报告了从水稻T-DNA插入群体中鉴定和表征的一个显性突变体大粒1(Bg1-D),该突变体表现出超大粒表型。BG1的过表达导致粒重显著增加,严重的株系表现出明显的向重力性紊乱。此外,该突变体对生长素和生长素运输抑制剂N-1-萘基邻苯二甲酸均表现出更高的敏感性,而敲低BG1则导致敏感性降低和籽粒变小。此外,BG1在生长素处理后被特异性诱导,优先在茎秆和幼穗的维管组织中表达,并编码一种新的膜定位蛋白,强烈表明其在调节生长素运输中的作用。与此发现一致,该突变体的生长素向基运输增加,生长素分布改变,而敲低植株的生长素运输减少。在水稻和拟南芥中对BG1进行调控均可提高植物生物量、种子重量和产量。综合这些数据,我们在一种作物中鉴定出一种新的生长素应答和运输的正调控因子,并证明了其在调节粒重中的作用,从而为提高作物生产力阐明了一种新策略。

相似文献

1
Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11102-7. doi: 10.1073/pnas.1512748112. Epub 2015 Aug 17.
4
OsAUX1 controls lateral root initiation in rice (Oryza sativa L.).
Plant Cell Environ. 2015 Nov;38(11):2208-22. doi: 10.1111/pce.12467. Epub 2015 Jan 7.
5
VLN2 Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice.
Plant Cell. 2015 Oct;27(10):2829-45. doi: 10.1105/tpc.15.00581. Epub 2015 Oct 20.
8
The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1.
Plant Cell Environ. 2015 Apr;38(4):638-54. doi: 10.1111/pce.12397. Epub 2014 Aug 6.
10
LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.
Cell Res. 2007 May;17(5):402-10. doi: 10.1038/cr.2007.38.

引用本文的文献

2
OsBZR4 regulates temperature-dependent embryogenesis in rice.
Nat Commun. 2025 Jul 26;16(1):6893. doi: 10.1038/s41467-025-62262-3.
6
Trihelix Transcription Factor OsTGS1 Regulates Grain Size and Weight in Rice.
Rice (N Y). 2025 Apr 29;18(1):31. doi: 10.1186/s12284-025-00792-6.
7
Carbohydrate flow during grain filling: Phytohormonal regulation and genetic control in rice (Oryza sativa).
J Integr Plant Biol. 2025 Apr;67(4):1086-1104. doi: 10.1111/jipb.13904. Epub 2025 Apr 7.
8
Azolla mediated alterations in grain yield and quality in Rice.
Physiol Plant. 2025 Mar-Apr;177(2):e70158. doi: 10.1111/ppl.70158.
10
Rice grain size: current regulatory mechanisms and future perspectives.
J Plant Res. 2025 May;138(3):403-417. doi: 10.1007/s10265-025-01626-8. Epub 2025 Mar 8.

本文引用的文献

1
Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis.
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4821-6. doi: 10.1073/pnas.1503998112. Epub 2015 Mar 23.
2
The role of auxin transporters in monocots development.
Front Plant Sci. 2014 Aug 15;5:393. doi: 10.3389/fpls.2014.00393. eCollection 2014.
3
Molecular genetic dissection of quantitative trait loci regulating rice grain size.
Annu Rev Genet. 2014;48:99-118. doi: 10.1146/annurev-genet-120213-092138. Epub 2014 Aug 18.
4
LSCHL4 from Japonica Cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11.
Mol Plant. 2014 Aug;7(8):1350-1364. doi: 10.1093/mp/ssu055. Epub 2014 May 2.
5
NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20431-6. doi: 10.1073/pnas.1310790110. Epub 2013 Dec 2.
6
Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15479-84. doi: 10.1073/pnas.1305175110. Epub 2013 Sep 3.
8
Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield.
Nat Genet. 2013 Jun;45(6):707-11. doi: 10.1038/ng.2612. Epub 2013 Apr 14.
9
Genes offering the potential for designing yield-related traits in rice.
Curr Opin Plant Biol. 2013 May;16(2):213-20. doi: 10.1016/j.pbi.2013.02.002. Epub 2013 Mar 1.
10
Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21534-9. doi: 10.1073/pnas.1219776110. Epub 2012 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验