Suppr超能文献

镍基和铈基固体氧化物电池电极上CO/CO₂与H₂/H₂O反应的动力学

Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.

作者信息

Graves Christopher, Chatzichristodoulou Christodoulos, Mogensen Mogens B

机构信息

Department of Energy Conversion and Storage, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.

出版信息

Faraday Discuss. 2015;182:75-95. doi: 10.1039/c5fd00048c.

Abstract

The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the CGOn/gas two phase boundary in CO/CO2 and in cathodic polarization can explain why the highest reaction rate is obtained for CO2 electrolysis. Large differences observed between model electrode kinetics and porous electrode kinetics are discussed.

摘要

固体氧化物电化学电池(SOC)是一种能量转换技术,它可以可逆运行,既能有效地将化学燃料转化为电能(燃料电池模式),也能将电能储存为化学燃料(电解模式)。SOC的燃料电极进行电化学反应CO2 + 2e(-) ↔ CO + O(2-)和H2O + 2e(-) ↔ H2 + O(2-),不同电极的电催化活性差异很大。即使对于最常见的燃料电极材料——镍与氧化钇/氧化钪稳定的氧化锆复合材料(Ni-SZ),CO/CO2和H2/H2O中的相对活性以及差异的本质也未得到充分研究。已知Ni-SZ对H2/H2O反应的活性比对CO/CO2反应的活性更高,但报道的相对活性差异很大。在此,我们比较了在两种气体环境中测量的几种由Ni-SZ、钆掺杂的二氧化铈(CGO)以及涂覆在铌掺杂的钛酸锶骨架上的CGO纳米颗粒(CGOn/STN)组成的不同电极的交流阻抗和直流电流-过电位数据。采用二维模型和三维多孔电极几何结构来研究微观结构、气体扩散和杂质的影响。比较模型和多孔Ni-SZ电极,CO/CO2与H2/H2O中电极极化电阻的比值从33降至2。实验和建模表明,该比值降低是由于阻碍三相边界的杂质浓度降低以及反应区延伸到多孔电极厚度的性质所致。除了显示出对H2/H2O反应的活性高于对CO/CO2反应的活性外,Ni/SZ界面的氧化活性高于还原活性。另一方面,对于CGOn/STN模型电极,我们在这两种情况下都发现了相反的行为,首次报道了在没有气体扩散限制的情况下,CGO纳米颗粒对CO/CO2反应的电催化活性高于对H2/H2O反应的电催化活性。我们提出,在CO/CO2中以及阴极极化时,CGOn/气体两相边界处表面还原的增强可以解释为什么CO2电解能获得最高反应速率。讨论了模型电极动力学和多孔电极动力学之间观察到的巨大差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验