Suppr超能文献

Na-羟乙基纤维素中二氧化碳、水和天然有机物的分子动力学模拟。

Molecular dynamics modeling of carbon dioxide, water and natural organic matter in Na-hectorite.

机构信息

Department of Chemical Engineering, University College London, London, WC1E7JE, UK.

出版信息

Phys Chem Chem Phys. 2015 Sep 28;17(36):23356-67. doi: 10.1039/c5cp03552j. Epub 2015 Aug 19.

Abstract

Molecular dynamics (MD) modeling of systems containing a Na-exchanged smectite clay (hectorite) and model natural organic matter (NOM) molecules along with pure H2O, pure CO2, or a mixture of H2O and CO2 provides significant new insight into the molecular scale interactions among silicate surfaces, dissolved cations and organic molecules, H2O and CO2 relevant to geological C-sequestration strategies. The simulations for systems containing H2O show the following results; (1) Na(+) does not bridge between NOM molecules and the clay surface at protonation states comparable to near neutral pH conditions. (2) In systems without CO2 the NOM molecules retain charge balancing cations and drift away from the silicate surface. (3) In systems containing both H2O and CO2, the NOM molecules adopt equilibrium positions at the H2O-CO2 interface with the more hydrophilic structural elements facing the H2O and the more hydrophobic ones facing the CO2. In systems with only CO2, NOM and Na(+) ions are pinned to the clay surface with the hydrophilic structural elements of the NOM pointed toward the clay surface. Dynamically, in systems with only CO2, Na(+) diffusion is nearly eliminated, and in systems with a thin water film on the clay surface diffusion perpendicular the surface is greatly reduced relative to the system with bulk water. Energetically, the results for the systems with only H2O show that hydration of the net charge neutral Na-NOM molecule outweighs the sum of its Coulombic and dispersive interactions with the net charge-neutral Na-clay particle and the interactions of the water molecules with the hydrophobic structural elements of the NOM. The aggregation of NOM molecules in solution appears to be driven not by Na(+) bridging between the molecules but by hydrophobic interactions between them. In contrast, for the systems with only CO2 the interaction between the Na-NOM molecules and the CO2 is outweighed by the interaction of NOM with the clay particle. With both H2O and CO2 present, the energetic interactions leading to the hydration of the Na-clay surface and the hydrophilic structural elements of the Na-NOM molecule and the hydrophobic interactions between the CO2 and the hydrophobic aromatic and aliphatic structural elements of the NOM can both be satisfied, leading to the Na-NOM molecules migrating away from the surface and residing at the H2O-CO2 interface. The MD results suggest some alternative explanations for the previously observed (23)Na NMR behavior of Na-hectorite at elevated temperatures and CO2 pressures.

摘要

含有钠离子交换蒙脱石(海泡石)和模型天然有机物(NOM)分子以及纯 H2O、纯 CO2 或 H2O 和 CO2 混合物的系统的分子动力学(MD)建模为地质封存策略中硅酸盐表面、溶解阳离子和有机分子、H2O 和 CO2 之间的分子尺度相互作用提供了重要的新见解。对于含有 H2O 的系统的模拟结果如下:(1)在与近中性 pH 条件相当的质子化状态下,Na+ 不会在 NOM 分子和粘土表面之间架桥。(2)在没有 CO2 的系统中,NOM 分子保留电荷平衡阳离子并从硅酸盐表面漂移。(3)在同时含有 H2O 和 CO2 的系统中,NOM 分子在 H2O-CO2 界面处采用平衡位置,亲水性结构元件面向 H2O,疏水性结构元件面向 CO2。在只有 CO2 的系统中,NOM 和 Na+ 离子被固定在粘土表面上,NOM 的亲水性结构元件指向粘土表面。动态地,在只有 CO2 的系统中,Na+ 扩散几乎被消除,而在粘土表面上存在薄水膜的系统中,垂直于表面的扩散相对于具有体相水的系统大大减少。从能量上看,仅含有 H2O 的系统的结果表明,带净电荷中性的 Na-NOM 分子的水合作用超过了其与带净电荷中性的 Na-粘土颗粒的库仑和分散相互作用以及水分子与 NOM 的疏水性结构元件的相互作用之和。溶液中 NOM 分子的聚集似乎不是由分子之间的 Na+ 桥接驱动,而是由它们之间的疏水相互作用驱动。相比之下,在只有 CO2 的系统中,Na-NOM 分子与 CO2 之间的相互作用被 NOM 与粘土颗粒之间的相互作用所取代。当同时存在 H2O 和 CO2 时,导致 Na-粘土表面和 Na-NOM 分子的亲水性结构元件的水合以及 CO2 与 NOM 的疏水性芳族和脂肪族结构元件之间的疏水相互作用的能量相互作用都可以得到满足,导致 Na-NOM 分子从表面迁移并驻留在 H2O-CO2 界面处。MD 结果为先前观察到的(23)Na NMR 行为提供了一些替代解释Na-海泡石在高温和 CO2 压力下的行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验