Suppr超能文献

使用优化基组和矩形配置计算15维UF6的非谐振动光谱。

Computing the Anharmonic Vibrational Spectrum of UF6 in 15 Dimensions with an Optimized Basis Set and Rectangular Collocation.

作者信息

Manzhos Sergei, Carrington Tucker, Laverdure Laura, Mosey Nicholas

机构信息

Department of Mechanical Engineering, National University of Singapore , Block EA #07-08, 9 Engineering Drive 1, Singapore 117576.

Department of Chemistry, Queen's University , Chernoff Hall, 90 Bader Lane, Kingston, ON, Canada K7L 3N6.

出版信息

J Phys Chem A. 2015 Sep 10;119(36):9557-67. doi: 10.1021/acs.jpca.5b07627. Epub 2015 Aug 28.

Abstract

The anharmonic vibrational spectrum of UF6 is computed in full dimensionality directly from ab initio data, i.e., bypassing the construction of a potential energy surface (PES). The vibrational Schrödinger equation is solved by fitting parameters of an adaptable basis using a modified version of the rectangular collocation algorithm of Manzhos and Carrington (J. Chem. Phys . 2013, 139, 051101). The basis functions are products of parametrized Hermite polynomials that impose approximate nodal structure. The Schrödinger equation is solved in normal coordinates. The results show that anharmonicity and coupling do noticeably affect the vibrational transitions, shifting them by several cm(-1). Although UF6 has 15 coordinates, we compute hundreds of levels with fewer than 1000 basis functions and about 50,000 ab initio points. It is the efficiency of the basis that makes it possible to forego a PES.

摘要

直接从从头算数据全维度计算六氟化铀的非谐振动光谱,即绕过势能面(PES)的构建。通过使用Manzhos和Carrington(《化学物理杂志》2013年,139卷,051101)的矩形配置算法的修改版本来拟合自适应基的参数,求解振动薛定谔方程。基函数是施加近似节点结构的参数化厄米多项式的乘积。薛定谔方程在正常坐标下求解。结果表明,非谐性和耦合确实会显著影响振动跃迁,使其移动数厘米-1。尽管六氟化铀有15个坐标,但我们用少于1000个基函数和约50000个从头算点计算了数百个能级。正是基的效率使得无需构建势能面成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验