Suppr超能文献

压缩采样辅助的二维光谱计算

Computation of Two-Dimensional Spectra Assisted by Compressed Sampling.

作者信息

Almeida J, Prior J, Plenio M B

机构信息

†Institute for Theoretical Physics, University Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.

§Institute for Integrated Quantum Science and Technology, University Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.

出版信息

J Phys Chem Lett. 2012 Sep 20;3(18):2692-6. doi: 10.1021/jz3009369. Epub 2012 Sep 11.

Abstract

The computation of scientific data can be very time-consuming, even if they are ultimately determined by a small number of parameters. The principle of compressed sampling suggests that for typical data we can achieve a considerable decrease in the computation time by avoiding the need to sample the full data set. We demonstrate the usefulness of this approach at the hand of two-dimensional (2-D) spectra in the context of ultrafast nonlinear spectroscopy of biological systems where numerical calculations are highly challenging due to the considerable computational effort involved in obtaining individual data points.

摘要

科学数据的计算可能非常耗时,即使它们最终由少数参数决定。压缩采样原理表明,对于典型数据,我们可以通过避免对整个数据集进行采样来显著减少计算时间。我们在生物系统超快非线性光谱学背景下的二维(2-D)光谱方面展示了这种方法的有效性,在该领域中,由于获取单个数据点需要大量的计算工作,数值计算极具挑战性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验