Suppr超能文献

硼和氮共掺杂的 LiFePO4 碳层提高锂离子电池的高倍率电化学性能。

Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

机构信息

School of Chemical Engineering, Tianjin University , Tianjin 300072, China.

Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University , Shihezi 832003, China.

出版信息

ACS Appl Mater Interfaces. 2015 Sep 16;7(36):20134-43. doi: 10.1021/acsami.5b05398. Epub 2015 Sep 2.

Abstract

An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1).

摘要

一种通过处理水热合成的 LiFePO4 制备的 LiFePO4 与氮和硼共掺杂碳层的进化复合材料。这种新的共掺杂方法成功地应用于 LiFePO4 的商业用途,并实现了优异的电化学性能。通过单氮掺杂(LiFePO4/C-N)或硼掺杂(LiFePO4/C-B)可以改善电化学性能。当用氮修饰 LiFePO4/C-B(合成 LiFePO4/C-B+N)时,会产生不理想的非导电 N-B 结构(190.1 和 397.9 eV),从而使电子电导率从 2.56×10(-2)降低至 1.30×10(-2)S cm(-1),导致电化学性能减弱。然而,采用相反的顺序用硼修饰 LiFePO4/C-N(得到 LiFePO4/C-N+B)不仅消除了非导电的 N-B 杂质,而且促进了导电的 C-N(398.3、400.3 和 401.1 eV)和 C-B(189.5 eV)结构,这显著提高了电子电导率至 1.36×10(-1)S cm(-1)。同时,与单 N 或 B 掺杂材料相比,正掺杂策略明显导致协同电化学活性增强(甚至比它们在 20 C 时的总和容量还要好)。此外,由于氮和硼原子提供的电子和空穴型载流子,N+B 共掺杂碳涂层极大地增强了电化学性能:在 20 C 的倍率下,共掺杂样品可将 LFP/C 的放电容量从 101.1 mAh g(-1)提高至 121.6 mAh g(-1),基于商业 LiFePO4/C 的共掺杂产物显示出 78.4 mAh g(-1)的放电容量,而不是 48.1 mAh g(-1)。然而,B+N 共掺杂样品使 LFP/C 的放电容量从 101.1 mAh g(-1)降低至 95.4 mAh g(-1),而商业 LFP/C 则从 48.1 mAh g(-1)降低至 40.6 mAh g(-1)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验