Suppr超能文献

弥合体外与体内研究的差距:ATR抑制剂AZD6738的剂量和给药方案预测

Bridging the gap between in vitro and in vivo: Dose and schedule predictions for the ATR inhibitor AZD6738.

作者信息

Checkley Stephen, MacCallum Linda, Yates James, Jasper Paul, Luo Haobin, Tolsma John, Bendtsen Claus

机构信息

AstraZeneca, Alderley Park, Macclesfield, SK10 4TG. UK.

RES Group Inc. Boston, MA. USA.

出版信息

Sci Rep. 2015 Aug 27;5:13545. doi: 10.1038/srep13545.

Abstract

Understanding the therapeutic effect of drug dose and scheduling is critical to inform the design and implementation of clinical trials. The increasing complexity of both mono, and particularly combination therapies presents a substantial challenge in the clinical stages of drug development for oncology. Using a systems pharmacology approach, we have extended an existing PK-PD model of tumor growth with a mechanistic model of the cell cycle, enabling simulation of mono and combination treatment with the ATR inhibitor AZD6738 and ionizing radiation. Using AZD6738, we have developed multi-parametric cell based assays measuring DNA damage and cell cycle transition, providing quantitative data suitable for model calibration. Our in vitro calibrated cell cycle model is predictive of tumor growth observed in in vivo mouse xenograft studies. The model is being used for phase I clinical trial designs for AZD6738, with the aim of improving patient care through quantitative dose and scheduling prediction.

摘要

了解药物剂量和给药方案的治疗效果对于指导临床试验的设计和实施至关重要。单药治疗,尤其是联合治疗的复杂性不断增加,这在肿瘤学药物开发的临床阶段构成了重大挑战。我们采用系统药理学方法,用细胞周期的机制模型扩展了现有的肿瘤生长PK-PD模型,从而能够模拟ATR抑制剂AZD6738与电离辐射的单药及联合治疗。使用AZD6738,我们开发了基于细胞的多参数测定法,用于测量DNA损伤和细胞周期转变,提供适用于模型校准的定量数据。我们经体外校准的细胞周期模型能够预测在体内小鼠异种移植研究中观察到的肿瘤生长情况。该模型正用于AZD6738的I期临床试验设计,目的是通过定量剂量和给药方案预测改善患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d750/4550834/8da9675726fb/srep13545-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验