Sun Ruimin, Wei Qiulong, Li Qidong, Luo Wen, An Qinyou, Sheng Jinzhi, Wang Di, Chen Wei, Mai Liqiang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070 China.
ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20902-8. doi: 10.1021/acsami.5b06385. Epub 2015 Sep 10.
As an alternative system of rechargeable lithium ion batteries, sodium ion batteries revitalize researchers' interest due to the low cost, abundant sodium resources, and similar storage mechanism to lithium ion batteries. VS4 has emerged as a promising anode material for SIBs due to low cost and its unique linear chains structure that can offer potential sites for sodium storage. Herein, we present the growth of VS4 on reduced graphene oxide (rGO) as SIBs anode for the first time. The VS4/rGO anode exhibits promising performance in SIBs. It delivers a reversible capacity of 362 mAh g(-1) at 100 mA g(-1) and a good rate performance. We also investigate the sodium storage behavior of the VS4/rGO. Different than most transition metal sulfides, the VS4/rGO composite experiences a three-step separation mechanism during the sodiation process (VS4 to metallic V and Na2S, then the electrochemical mechanism is akin to Na-S). The VS4/rGO composite proves to be a promising material for rechargeable SIBs.
作为可充电锂离子电池的替代系统,钠离子电池因其低成本、钠资源丰富以及与锂离子电池相似的存储机制而重新激发了研究人员的兴趣。VS4由于成本低及其独特的线性链结构(可为钠存储提供潜在位点),已成为钠离子电池一种有前景的负极材料。在此,我们首次展示了VS4在还原氧化石墨烯(rGO)上的生长作为钠离子电池负极。VS4/rGO负极在钠离子电池中表现出有前景的性能。在100 mA g(-1)下它具有362 mAh g(-1)的可逆容量以及良好的倍率性能。我们还研究了VS4/rGO的储钠行为。与大多数过渡金属硫化物不同,VS4/rGO复合材料在 sodiation 过程中经历三步分离机制(VS4 转变为金属 V 和 Na2S,然后电化学机制类似于 Na-S)。VS4/rGO复合材料被证明是一种有前景的可充电钠离子电池材料。