Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich , Hönggerberg, HCI, CH-8093 Zürich, Switzerland.
J Am Chem Soc. 2015 Sep 23;137(37):12121-30. doi: 10.1021/jacs.5b07904. Epub 2015 Sep 15.
In the (S)-proline-mediated asymmetric hydrogenation of isophorone (IP) on supported Pd catalyst, excellent enantioselectivity is achieved, with an enantiomeric excess of up to 99%. The role of the heterogeneous catalyst has been the subject of a controversial debate, and the current mechanistic understanding cannot explain the observed enantioselectivity of this catalytic system. The lack of in situ information about the role of the heterogeneous catalyst has prompted us to investigate the surface processes occurring at the methanol-Pd catalyst interface using attenuated total reflection infrared spectroscopy. Time-resolved monitoring of the homogeneous solution and of the catalytic solid-liquid interface coupled with catalytic data provides crucial information on the catalytically relevant enantiodifferentiating processes. While the condensation of IP and the corresponding chiral product 3,3,5-trimethylcyclohexanone with the chiral amine is connected to the enantiodifferentiation, it was found that the crucial enantioselectivity-controlling steps take place on the metal surface, and the reaction has to be classified as heterogeneous asymmetric hydrogenation. The presented spectroscopic and catalytic results provide strong evidence for the existence of two competing enantioselective processes leading to opposing enantioselection. Depending on surface coverage of the Pd catalyst, the reaction is controlled either by kinetic resolution ((S)-pathway) or by chiral catalysis ((R)-pathway). Steering the hydrogenation on the (R)-reaction pathway requires sufficient concentration of IP-(S)-proline condensate, as this chiral reactive intermediate becomes the most abundant surface species, inhibiting the competing kinetic resolution. The unraveled (R)-reaction pathway emphasizes an intriguing strategy for inducing chirality in heterogeneous asymmetric catalysis.
在负载钯催化剂上(S)-脯氨酸介导的异佛尔酮(IP)不对称氢化反应中,实现了优异的对映选择性,对映体过量高达 99%。多相催化剂的作用一直是一个有争议的话题,目前的机理理解无法解释这个催化体系的观察到的对映选择性。缺乏关于多相催化剂作用的原位信息促使我们使用衰减全反射红外光谱研究甲醇-Pd 催化剂界面上发生的表面过程。均相溶液和催化固液界面的时间分辨监测与催化数据相结合,提供了关于催化相关的对映体区分过程的关键信息。虽然 IP 和相应的手性产物 3,3,5-三甲基环己酮与手性胺的缩合与对映体分化有关,但发现关键的对映选择性控制步骤发生在金属表面上,反应必须被归类为多相不对称氢化。所提出的光谱和催化结果为存在两种竞争的对映选择性过程导致相反的对映选择性提供了强有力的证据。根据 Pd 催化剂的表面覆盖率,反应由动力学拆分((S)-途径)或手性催化((R)-途径)控制。要使氢化反应在(R)反应途径上进行,需要有足够浓度的 IP-(S)-脯氨酸缩合物,因为这种手性反应性中间体能成为最丰富的表面物种,抑制竞争的动力学拆分。揭示的(R)反应途径强调了一种在多相不对称催化中诱导手性的有趣策略。