Lesot Philippe, Kazimierczuk Krzysztof, Trébosc Julien, Amoureux Jean-Paul, Lafon Olivier
RMN en Milieu Orienté, ICMMO, UMR-CNRS 8182, Université de Paris-Sud, Orsay, F-91405, Cedex Orsay, France.
Centre of New Technologies, University of Warsaw, Banacha 2C, 02097, Warsaw, Poland.
Magn Reson Chem. 2015 Nov;53(11):927-39. doi: 10.1002/mrc.4290. Epub 2015 Aug 31.
Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years.
通过使用多维核磁共振(NMR)实验,可以获得有关固体和中间相原子级结构与动力学的独特信息。然而,这些实验的采集通常需要很长的采集时间。我们在此回顾一些替代采样方法,这些方法已被提出用于解决固体和中间相情况下的这一问题。与溶液的光谱相比,固体和中间相的光谱具有一些特殊性,因为它们通常显示出较低的信噪比、非洛伦兹线形、较低的光谱分辨率和较宽的光谱宽度。我们在此强调这些替代采样方法的优点和局限性。加速多维NMR光谱采集时间的第一条途径是使用稀疏采样方案,如截断采样、径向采样或随机采样方案。这些稀疏采样数据集通常通过不同于离散傅里叶变换(DFT)的重建方法进行处理。许多非DFT方法已应用于固体和中间相,包括G矩阵傅里叶变换、线性最小二乘法、协方差变换、最大熵和压缩感知。第二类替代采样在于背离多维NMR实验的吉纳范式。这些非吉纳方法包括哈达玛光谱以及演化频率的空间或取向编码。在未来几年中,越来越多的高场NMR磁体以及提高NMR灵敏度的技术发展将有助于扩大这些替代采样方法在固体和中间相研究中的应用。