Suppr超能文献

点击化学中的铜纳米粒子。

Copper Nanoparticles in Click Chemistry.

机构信息

Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante , Apdo. 99, 03080 Alicante, Spain.

Departamento de Química, Instituto de Química del Sur (INQUISUR-CONICET), Universidad Nacional del Sur , Avenida Alem 1253, 8000 Bahía Blanca, Argentina.

出版信息

Acc Chem Res. 2015 Sep 15;48(9):2516-28. doi: 10.1021/acs.accounts.5b00293. Epub 2015 Sep 2.

Abstract

The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide-alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10-30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very effective in the multicomponent and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles in water from organic halides as azido precursors; magnetically recoverable CuNPs (3.0 ± 0.8 nm) supported on MagSilica could be alternatively used for the same purpose under similar conditions. Incorporation of an aromatic substituent at the 1-position of the triazole could be accomplished using the same CuNPs/C catalytic system starting from aryldiazonium salts or anilines as azido precursors. CuNPs/C in water also catalyzed the regioselective double-click synthesis of β-hydroxy-1,2,3-triazoles from epoxides. Furthermore, alkenes could be also used as azido precursors through a one-pot CuNPs/C-catalyzed azidosulfenylation-CuAAC sequential protocol, providing β-methylsulfanyl-1,2,3-triazoles in a stereo- and regioselective manner. In all types of reaction studied, CuNPs/C exhibited better behavior than some commercial copper catalysts with regard to the metal loading, reaction time, yield, and recyclability. Therefore, the results of this study also highlight the utility of nanosized copper in click chemistry compared with bulk copper sources.

摘要

21 世纪的挑战需要科学和技术成就,这些成就必须在可持续和环境友好的实践下发展。在这方面,点击化学和绿色化学携手合作,遵循严格的原则,有助于保护我们的星球免受疏忽和不受控制的生产的影响。铜催化的叠氮-炔环加成(CuAAC)是有机化学中最可靠和广泛应用的合成转化之一,具有多学科的应用。纳米催化是一种绿色化学工具,可以通过增强纳米结构金属的催化活性及其作为多相催化剂的合理再利用能力来提高 CuAAC 的固有效率。本账户描述了我们使用未经支持和支持的铜纳米颗粒(CuNPs)作为催化剂在点击化学中的贡献,这些催化剂是通过化学还原制备的。在四氢呋喃中发现 Cu(0)NPs(3.0 ± 1.5nm)在三乙胺存在下可以催化末端炔烃和有机叠氮化物的反应,其反应速率与微波加热下的反应速率相当(在大多数情况下为 10-30 分钟)。不幸的是,CuNPs 在反应条件下发生溶解,因此无法回收。提供了关于原位生成高反应性氯化亚铜和参与铜炔化物的令人信服的实验证据。与未支持的对应物相比,负载型 CuNPs 是一种更稳健和有效的催化剂,具有以下优点:(a)可以应用多组分 CuAAC 变体;(b)可以大大降低金属负载;(c)可以在纯水中进行反应;(d)可以容易地回收和再利用催化剂。特别是,由氧化 CuNPs(Cu2O/CuO,6.0 ± 2.0nm)负载在碳上(CuNPs/C)组成的催化剂在水中从有机卤化物作为叠氮前体的多组分和区域选择性合成 1,4-取代的 1,2,3-三唑方面表现出高度的多功能性和非常有效;可通过磁性回收的负载在 MagSilica 上的 CuNPs(3.0 ± 0.8nm)可以在类似条件下替代用于相同目的。通过使用相同的 CuNPs/C 催化体系,从芳基重氮盐或苯胺作为叠氮前体,可以完成 1-位取代的三唑的引入芳基取代基。CuNPs/C 在水中还可以催化环氧化物的区域选择性双点击合成β-羟基-1,2,3-三唑。此外,通过一锅法 CuNPs/C 催化的叠氮磺酰化-CuAAC 顺序方案,也可以将烯烃用作叠氮前体,以立体和区域选择性方式提供β-甲基亚磺酰基-1,2,3-三唑。在所研究的所有类型的反应中,CuNPs/C 在金属负载、反应时间、产率和可回收性方面均表现出优于一些商业铜催化剂的性能。因此,这项研究的结果还突出了纳米铜在点击化学中相对于块状铜源的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验