Leutzsch Markus, Wolf Larry M, Gupta Puneet, Fuchs Michael, Thiel Walter, Farès Christophe, Fürstner Alois
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany).
Angew Chem Int Ed Engl. 2015 Oct 12;54(42):12431-6. doi: 10.1002/anie.201506075. Epub 2015 Aug 31.
Insights into the mechanism of the unusual trans-hydrogenation of internal alkynes catalyzed by {Cp*Ru} complexes were gained by para-hydrogen (p-H2 ) induced polarization (PHIP) transfer NMR spectroscopy. It was found that the productive trans-reduction competes with a pathway in which both H atoms of H2 are delivered to a single alkyne C atom of the substrate while the second alkyne C atom is converted into a metal carbene. This "geminal hydrogenation" mode seems unprecedented; it was independently confirmed by the isolation and structural characterization of a ruthenium carbene complex stabilized by secondary inter-ligand interactions. A detailed DFT study shows that the trans alkene and the carbene complex originate from a common metallacyclopropene intermediate. Furthermore, the computational analysis and the PHIP NMR data concur in that the metal carbene is the major gateway to olefin isomerization and over-reduction, which frequently interfere with regular alkyne trans-hydrogenation.
通过仲氢(p-H₂)诱导极化(PHIP)转移核磁共振光谱,深入了解了{Cp*Ru}配合物催化的内炔烃异常反式氢化反应的机理。研究发现,有效的反式还原与一种途径相互竞争,在该途径中,H₂的两个H原子都传递到底物的单个炔烃C原子上,而第二个炔烃C原子则转化为金属卡宾。这种“偕二氢化”模式似乎前所未有的;通过二级配体间相互作用稳定的钌卡宾配合物的分离和结构表征得到了独立证实。详细的密度泛函理论(DFT)研究表明,反式烯烃和卡宾配合物源自共同的金属环丙烯中间体。此外,计算分析和PHIP核磁共振数据一致表明,金属卡宾是烯烃异构化和过度还原的主要途径,这经常干扰常规的炔烃反式氢化反应。