Suppr超能文献

依靠去抑制作用:一种用于无尾目听觉系统中时间间隔计数和选择性的神经回路模式。

Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system.

作者信息

Naud Richard, Houtman Dave, Rose Gary J, Longtin André

机构信息

Department of Physics, University of Ottawa, Ottawa, Canada; and.

Department of Biology, University of Utah, Salt Lake City, Utah.

出版信息

J Neurophysiol. 2015 Nov;114(5):2804-15. doi: 10.1152/jn.00138.2015. Epub 2015 Sep 2.

Abstract

Information can be encoded in the temporal patterning of spikes. How the brain reads these patterns is of general importance and represents one of the greatest challenges in neuroscience. We addressed this issue in relation to temporal pattern recognition in the anuran auditory system. Many species of anurans perform mating decisions based on the temporal structure of advertisement calls. One important temporal feature is the number of sound pulses that occur with a species-specific interpulse interval. Neurons representing this pulse count have been recorded in the anuran inferior colliculus, but the mechanisms underlying their temporal selectivity are incompletely understood. Here, we construct a parsimonious model that can explain the key dynamical features of these cells with biologically plausible elements. We demonstrate that interval counting arises naturally when combining interval-selective inhibition with pulse-per-pulse excitation having both fast- and slow-conductance synapses. Interval-dependent inhibition is modeled here by a simple architecture based on known physiology of afferent nuclei. Finally, we consider simple implementations of previously proposed mechanistic explanations for these counting neurons and show that they do not account for all experimental observations. Our results demonstrate that tens of millisecond-range temporal selectivities can arise from simple connectivity motifs of inhibitory neurons, without recourse to internal clocks, spike-frequency adaptation, or appreciable short-term plasticity.

摘要

信息可以编码在尖峰的时间模式中。大脑如何读取这些模式具有普遍重要性,是神经科学中最大的挑战之一。我们针对无尾目听觉系统中的时间模式识别解决了这个问题。许多无尾目物种根据求偶鸣叫的时间结构做出交配决定。一个重要的时间特征是具有物种特异性脉冲间隔的声脉冲数量。在无尾目动物的下丘中记录到了代表这种脉冲计数的神经元,但其时间选择性的潜在机制尚未完全了解。在这里,我们构建了一个简约模型,该模型可以用生物学上合理的元素解释这些细胞的关键动态特征。我们证明,当将间隔选择性抑制与具有快速和慢速传导突触的逐个脉冲兴奋相结合时,间隔计数自然会出现。这里通过基于传入核已知生理学的简单架构对间隔依赖性抑制进行建模。最后,我们考虑了先前提出的针对这些计数神经元的机制解释的简单实现方式,并表明它们无法解释所有实验观察结果。我们的结果表明,几十毫秒范围内的时间选择性可以由抑制性神经元的简单连接模式产生,而无需借助内部时钟、脉冲频率适应或明显的短期可塑性。

相似文献

1
Counting on dis-inhibition: a circuit motif for interval counting and selectivity in the anuran auditory system.
J Neurophysiol. 2015 Nov;114(5):2804-15. doi: 10.1152/jn.00138.2015. Epub 2015 Sep 2.
2
Species specificity of temporal processing in the auditory midbrain of gray treefrogs: long-interval neurons.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2016 Jan;202(1):67-79. doi: 10.1007/s00359-015-1054-z. Epub 2015 Nov 27.
3
Interval-integration underlies amplitude modulation band-suppression selectivity in the anuran midbrain.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Dec;189(12):907-14. doi: 10.1007/s00359-003-0467-2. Epub 2003 Nov 5.
5
Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Jan;197(1):97-108. doi: 10.1007/s00359-010-0591-8. Epub 2010 Oct 8.
6
Mechanisms of long-interval selectivity in midbrain auditory neurons: roles of excitation, inhibition, and plasticity.
J Neurophysiol. 2008 Dec;100(6):3407-16. doi: 10.1152/jn.90921.2008. Epub 2008 Oct 22.
7
Species-specificity of temporal processing in the auditory midbrain of gray treefrogs: interval-counting neurons.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 May;201(5):485-503. doi: 10.1007/s00359-015-0997-4. Epub 2015 Mar 13.
8
How auditory neurons count temporal intervals and decode information.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2404157121. doi: 10.1073/pnas.2404157121. Epub 2024 Aug 19.
9
Counting on inhibition and rate-dependent excitation in the auditory system.
J Neurosci. 2007 Dec 5;27(49):13384-92. doi: 10.1523/JNEUROSCI.2816-07.2007.
10
Neural basis of acoustic species recognition in a cryptic species complex.
J Exp Biol. 2021 Dec 1;224(23). doi: 10.1242/jeb.243405. Epub 2021 Dec 9.

引用本文的文献

1
How auditory neurons count temporal intervals and decode information.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2404157121. doi: 10.1073/pnas.2404157121. Epub 2024 Aug 19.
2
Ascending neurons convey behavioral state to integrative sensory and action selection brain regions.
Nat Neurosci. 2023 Apr;26(4):682-695. doi: 10.1038/s41593-023-01281-z. Epub 2023 Mar 23.
3
A biophysical counting mechanism for keeping time.
Biol Cybern. 2022 Apr;116(2):205-218. doi: 10.1007/s00422-021-00915-4. Epub 2022 Jan 15.
4
Neural basis of acoustic species recognition in a cryptic species complex.
J Exp Biol. 2021 Dec 1;224(23). doi: 10.1242/jeb.243405. Epub 2021 Dec 9.
6
Periodicity Pitch Perception.
Front Neurosci. 2020 Jun 4;14:486. doi: 10.3389/fnins.2020.00486. eCollection 2020.
7
Adaptations during Maturation in an Identified Honeybee Interneuron Responsive to Waggle Dance Vibration Signals.
eNeuro. 2019 Sep 6;6(5). doi: 10.1523/ENEURO.0454-18.2019. Print 2019 Sep/Oct.
8
A neuromechanistic model for rhythmic beat generation.
PLoS Comput Biol. 2019 May 9;15(5):e1006450. doi: 10.1371/journal.pcbi.1006450. eCollection 2019 May.
9
Inhibitory Pathways for Processing the Temporal Structure of Sensory Signals in the Insect Brain.
Front Psychol. 2018 Aug 21;9:1517. doi: 10.3389/fpsyg.2018.01517. eCollection 2018.
10
Counting insects.
Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;373(1740). doi: 10.1098/rstb.2016.0513.

本文引用的文献

1
Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons.
J Neurosci. 2014 Oct 22;34(43):14272-87. doi: 10.1523/JNEUROSCI.2299-14.2014.
3
Development of elementary numerical abilities: a neuronal model.
J Cogn Neurosci. 1993 Fall;5(4):390-407. doi: 10.1162/jocn.1993.5.4.390.
4
The organization of two new cortical interneuronal circuits.
Nat Neurosci. 2013 Feb;16(2):210-8. doi: 10.1038/nn.3305. Epub 2013 Jan 13.
5
Inhibitory control of hippocampal inhibitory neurons.
Front Neurosci. 2012 Nov 14;6:165. doi: 10.3389/fnins.2012.00165. eCollection 2012.
6
Duration tuning across vertebrates.
J Neurosci. 2012 May 2;32(18):6373-90. doi: 10.1523/JNEUROSCI.5624-11.2012.
7
Synchrony in sensation.
Curr Opin Neurobiol. 2011 Oct;21(5):701-8. doi: 10.1016/j.conb.2011.06.003. Epub 2011 Jun 30.
8
A reservoir of time constants for memory traces in cortical neurons.
Nat Neurosci. 2011 Mar;14(3):366-72. doi: 10.1038/nn.2752. Epub 2011 Feb 13.
9
Duration tuning in the auditory midbrain of echolocating and non-echolocating vertebrates.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 May;197(5):571-83. doi: 10.1007/s00359-011-0627-8. Epub 2011 Feb 9.
10
Gating of signal propagation in spiking neural networks by balanced and correlated excitation and inhibition.
J Neurosci. 2010 Nov 24;30(47):15760-8. doi: 10.1523/JNEUROSCI.3874-10.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验