Naud Richard, Houtman Dave, Rose Gary J, Longtin André
Department of Physics, University of Ottawa, Ottawa, Canada; and.
Department of Biology, University of Utah, Salt Lake City, Utah.
J Neurophysiol. 2015 Nov;114(5):2804-15. doi: 10.1152/jn.00138.2015. Epub 2015 Sep 2.
Information can be encoded in the temporal patterning of spikes. How the brain reads these patterns is of general importance and represents one of the greatest challenges in neuroscience. We addressed this issue in relation to temporal pattern recognition in the anuran auditory system. Many species of anurans perform mating decisions based on the temporal structure of advertisement calls. One important temporal feature is the number of sound pulses that occur with a species-specific interpulse interval. Neurons representing this pulse count have been recorded in the anuran inferior colliculus, but the mechanisms underlying their temporal selectivity are incompletely understood. Here, we construct a parsimonious model that can explain the key dynamical features of these cells with biologically plausible elements. We demonstrate that interval counting arises naturally when combining interval-selective inhibition with pulse-per-pulse excitation having both fast- and slow-conductance synapses. Interval-dependent inhibition is modeled here by a simple architecture based on known physiology of afferent nuclei. Finally, we consider simple implementations of previously proposed mechanistic explanations for these counting neurons and show that they do not account for all experimental observations. Our results demonstrate that tens of millisecond-range temporal selectivities can arise from simple connectivity motifs of inhibitory neurons, without recourse to internal clocks, spike-frequency adaptation, or appreciable short-term plasticity.
信息可以编码在尖峰的时间模式中。大脑如何读取这些模式具有普遍重要性,是神经科学中最大的挑战之一。我们针对无尾目听觉系统中的时间模式识别解决了这个问题。许多无尾目物种根据求偶鸣叫的时间结构做出交配决定。一个重要的时间特征是具有物种特异性脉冲间隔的声脉冲数量。在无尾目动物的下丘中记录到了代表这种脉冲计数的神经元,但其时间选择性的潜在机制尚未完全了解。在这里,我们构建了一个简约模型,该模型可以用生物学上合理的元素解释这些细胞的关键动态特征。我们证明,当将间隔选择性抑制与具有快速和慢速传导突触的逐个脉冲兴奋相结合时,间隔计数自然会出现。这里通过基于传入核已知生理学的简单架构对间隔依赖性抑制进行建模。最后,我们考虑了先前提出的针对这些计数神经元的机制解释的简单实现方式,并表明它们无法解释所有实验观察结果。我们的结果表明,几十毫秒范围内的时间选择性可以由抑制性神经元的简单连接模式产生,而无需借助内部时钟、脉冲频率适应或明显的短期可塑性。