Kim Young K, Blackburn Daniel G
Department of Biology and Electron Microscopy Facility, Trinity College, Hartford, Connecticut, 06106.
J Morphol. 2015 Dec;276(12):1467-81. doi: 10.1002/jmor.20435. Epub 2015 Sep 3.
In reptilian sauropsids, fetal (extraembryonic) membranes that line the eggshell sustain developing embryos by providing for gas exchange and uptake of water and eggshell calcium. However, a scarcity of morphological studies hinders an understanding of functional specializations and their evolution. In kingsnakes (Lampropeltis getula), scanning electron microscopy reveals two major fetal membranes: the chorioallantois and yolk sac omphalopleure. In early development, the chorioallantois contains tall chorionic epithelial cells, avascular connective tissue, and enlarged allantoic epithelial cells. During its maturation, the chorionic and allantoic epithelia thin dramatically and become underlain by a rich network of allantoic capillaries, yielding a membrane ideally suited for respiratory gas exchange. Yolk sac development initially is like that of typical lizards and snakes, forming an avascular omphalopleure, isolated yolk mass (IYM), and yolk cleft. However, unlike the situation in most squamates studied, the omphalopleure becomes transformed into a "secondary chorioallantois" via three asynchronous events: flattening of the epithelium, regression of the IYM, and vascularization by the allantois. Progressive expansion of chorioallantois parallels growing embryonic needs for gas exchange. In early through mid-development, external surfaces of both the chorionic and omphalopleure epithelium show an abundance of irregular surface protrusions that possibly increase surface area for water absorption. We postulate that the hypertrophied allantoic epithelial cells produce allantoic fluid, a viscous substance that facilitates water uptake and storage. Our findings are consistent with a previous study on the corn snake Pantherophis guttatus, but include new observations and novel functional hypotheses relevant to a reconstruction of basal squamate patterns.
在爬行类蜥形纲动物中,衬于蛋壳内的胎膜(胚外膜)通过进行气体交换以及吸收水分和蛋壳钙来维持胚胎发育。然而,形态学研究的匮乏阻碍了对功能特化及其进化的理解。在王蛇(Lampropeltis getula)中,扫描电子显微镜揭示了两种主要的胎膜:绒毛尿囊膜和卵黄囊脐静脉胎膜。在早期发育阶段,绒毛尿囊膜包含高柱状的绒毛膜上皮细胞、无血管的结缔组织以及增大的尿囊上皮细胞。在其成熟过程中,绒毛膜和尿囊上皮显著变薄,并被丰富的尿囊毛细血管网络所覆盖,形成了一个理想的用于呼吸气体交换的膜。卵黄囊的发育最初与典型蜥蜴和蛇的情况相似,形成一个无血管的脐静脉胎膜、孤立的卵黄块(IYM)和卵黄裂。然而,与大多数已研究的有鳞目动物不同,脐静脉胎膜通过三个不同步的事件转变为“次生绒毛尿囊膜”:上皮细胞扁平化、IYM退化以及尿囊血管化。绒毛尿囊膜的逐渐扩展与胚胎对气体交换不断增长的需求相平行。在发育早期至中期,绒毛膜和脐静脉胎膜上皮的外表面都有大量不规则的表面突起,这可能增加了吸水的表面积。我们推测肥大的尿囊上皮细胞产生尿囊液,这是一种促进水分吸收和储存的粘性物质。我们的研究结果与之前对玉米蛇(Pantherophis guttatus)的研究一致,但包括了与重建基础有鳞目动物模式相关的新观察结果和新的功能假说。