Berendsen Erwin M, Krawczyk Antonina O, Klaus Verena, de Jong Anne, Boekhorst Jos, Eijlander Robyn T, Kuipers Oscar P, Wells-Bennik Marjon H J
Top Institute Food and Nutrition, Wageningen, The Netherlands Laboratory of Molecular Genetics, University of Groningen, Groningen, The Netherlands NIZO Food Research B.V., The Netherlands.
Top Institute Food and Nutrition, Wageningen, The Netherlands Laboratory of Molecular Genetics, University of Groningen, Groningen, The Netherlands.
Appl Environ Microbiol. 2015 Nov;81(22):7791-801. doi: 10.1128/AEM.01993-15. Epub 2015 Sep 4.
High-level heat resistance of spores of Bacillus thermoamylovorans poses challenges to the food industry, as industrial sterilization processes may not inactivate such spores, resulting in food spoilage upon germination and outgrowth. In this study, the germination and heat resistance properties of spores of four food-spoiling isolates were determined. Flow cytometry counts of spores were much higher than their counts on rich medium (maximum, 5%). Microscopic analysis revealed inefficient nutrient-induced germination of spores of all four isolates despite the presence of most known germination-related genes, including two operons encoding nutrient germinant receptors (GRs), in their genomes. In contrast, exposure to nonnutrient germinant calcium-dipicolinic acid (Ca-DPA) resulted in efficient (50 to 98%) spore germination. All four strains harbored cwlJ and gerQ genes, which are known to be essential for Ca-DPA-induced germination in Bacillus subtilis. When determining spore survival upon heating, low viable counts can be due to spore inactivation and an inability to germinate. To dissect these two phenomena, the recoveries of spores upon heat treatment were determined on plates with and without preexposure to Ca-DPA. The high-level heat resistance of spores as observed in this study (D120°C, 1.9 ± 0.2 and 1.3 ± 0.1 min; z value, 12.2 ± 1.8°C) is in line with survival of sterilization processes in the food industry. The recovery of B. thermoamylovorans spores can be improved via nonnutrient germination, thereby avoiding gross underestimation of their levels in food ingredients.
嗜热解淀粉芽孢杆菌孢子的高耐热性给食品工业带来了挑战,因为工业杀菌过程可能无法使此类孢子失活,导致孢子萌发和生长后食品变质。在本研究中,测定了四株食品腐败分离株孢子的萌发和耐热特性。流式细胞术计数的孢子数量远高于其在丰富培养基上的计数(最高为5%)。显微镜分析显示,尽管这四株分离株的基因组中存在大多数已知的与萌发相关的基因,包括两个编码营养萌发受体(GRs)的操纵子,但营养诱导的孢子萌发效率低下。相反,暴露于非营养萌发剂吡啶二羧酸钙(Ca-DPA)会导致高效(50%至98%)的孢子萌发。所有四株菌株都含有cwlJ和gerQ基因,已知这些基因对枯草芽孢杆菌中Ca-DPA诱导的萌发至关重要。在测定加热后孢子的存活率时,低活菌数可能是由于孢子失活和无法萌发。为了剖析这两种现象,在有和没有预先暴露于Ca-DPA的平板上测定了热处理后孢子的回收率。本研究中观察到的孢子的高耐热性(120°C时的D值为1.9±0.2和1.3±0.1分钟;z值为12.2±1.8°C)与食品工业杀菌过程中的存活率一致。嗜热解淀粉芽孢杆菌孢子的回收率可通过非营养萌发得到提高,从而避免严重低估其在食品成分中的含量。