Suppr超能文献

虚拟显微切割鉴定出胰腺导管腺癌不同的肿瘤特异性和基质特异性亚型。

Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma.

作者信息

Moffitt Richard A, Marayati Raoud, Flate Elizabeth L, Volmar Keith E, Loeza S Gabriela Herrera, Hoadley Katherine A, Rashid Naim U, Williams Lindsay A, Eaton Samuel C, Chung Alexander H, Smyla Jadwiga K, Anderson Judy M, Kim Hong Jin, Bentrem David J, Talamonti Mark S, Iacobuzio-Donahue Christine A, Hollingsworth Michael A, Yeh Jen Jen

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.

University of North Carolina-Rex Healthcare, Chapel Hill, North Carolina, USA.

出版信息

Nat Genet. 2015 Oct;47(10):1168-78. doi: 10.1038/ng.3398. Epub 2015 Sep 7.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) remains a lethal disease with a 5-year survival rate of 4%. A key hallmark of PDAC is extensive stromal involvement, which makes capturing precise tumor-specific molecular information difficult. Here we have overcome this problem by applying blind source separation to a diverse collection of PDAC gene expression microarray data, including data from primary tumor, metastatic and normal samples. By digitally separating tumor, stromal and normal gene expression, we have identified and validated two tumor subtypes, including a 'basal-like' subtype that has worse outcome and is molecularly similar to basal tumors in bladder and breast cancers. Furthermore, we define 'normal' and 'activated' stromal subtypes, which are independently prognostic. Our results provide new insights into the molecular composition of PDAC, which may be used to tailor therapies or provide decision support in a clinical setting where the choice and timing of therapies are critical.

摘要

胰腺导管腺癌(PDAC)仍然是一种致命疾病,5年生存率为4%。PDAC的一个关键特征是广泛的间质浸润,这使得获取精确的肿瘤特异性分子信息变得困难。在这里,我们通过将盲源分离应用于多种PDAC基因表达微阵列数据(包括来自原发性肿瘤、转移瘤和正常样本的数据)克服了这一问题。通过数字分离肿瘤、间质和正常基因表达,我们识别并验证了两种肿瘤亚型,包括一种“基底样”亚型,其预后较差,在分子水平上与膀胱癌和乳腺癌中的基底肿瘤相似。此外,我们定义了“正常”和“活化”间质亚型,它们具有独立的预后价值。我们的结果为PDAC的分子组成提供了新的见解,可用于在治疗选择和时机至关重要的临床环境中定制治疗方案或提供决策支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0380/4912058/4466e1d6e631/nihms716599f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验