Department of Molecular Pharmacology and Experimental Therapeutics, 200 First Street SW, Mayo Clinic, Rochester, MN 55905, USA; Center for Regenerative Medicine, 200 First Street SW, Mayo Clinic, Rochester, MN 55905, USA; Division of General Internal Medicine, 200 First Street SW, Mayo Clinic, Rochester, MN 55905, USA.
Department of Health Sciences Research, 200 First Street SW, Mayo Clinic, Rochester, MN 55905, USA; Division of Biomedical Statistics and Informatics, 200 First Street SW, Mayo Clinic, Rochester, MN 55905, USA.
J Mol Cell Cardiol. 2015 Oct;87:228-36. doi: 10.1016/j.yjmcc.2015.08.021. Epub 2015 Sep 4.
Through genome-wide transcriptional comparisons, this study interrogates the capacity of in vitro differentiation of induced pluripotent stem cells (iPSCs) to accurately model pathogenic signatures of developmental cardiac defects.
Herein, we studied the molecular etiology of cardiac defects in Nos3(-/-) mice via transcriptional analysis of stage-matched embryonic tissues and iPSC-derived cells. In vitro comparisons of differentiated cells were calibrated to in utero benchmarks of health and disease. Integrated systems biology analysis of WT and Nos3(-/-) transcriptional profiles revealed 50% concordant expression patterns between in utero embryonic tissues and ex vivo iPSC-derived cells. In particular, up-regulation of glucose metabolism (p-value=3.95×10(-12)) and down-regulation of fatty acid metabolism (p-value=6.71×10(-12)) highlight a bioenergetic signature of early Nos3 deficiency during cardiogenesis that can be recapitulated in iPSC-derived differentiated cells.
The in vitro concordance of early Nos3(-/-) disease signatures supports the utility of iPSCs as a cellular model of developmental heart defects. Moreover, this study supports the use of iPSCs as a platform to pinpoint initial stages of congenital cardiac pathogenesis.
本研究通过全基因组转录组比较,探究诱导多能干细胞(iPSC)体外分化准确模拟发育性心脏缺陷致病特征的能力。
在此,我们通过对匹配阶段的胚胎组织和 iPSC 衍生细胞进行转录分析,研究了 Nos3(-/-)小鼠心脏缺陷的分子病因。对分化细胞的体外比较进行了校准,以适应健康和疾病的宫内基准。WT 和 Nos3(-/-)转录谱的综合系统生物学分析显示,宫内胚胎组织和体外 iPSC 衍生细胞之间有 50%的表达模式一致。特别是,葡萄糖代谢的上调(p 值=3.95×10(-12))和脂肪酸代谢的下调(p 值=6.71×10(-12))突出了在心脏发生过程中早期 Nos3 缺乏的生物能量特征,这可以在 iPSC 衍生的分化细胞中重现。
早期 Nos3(-/-)疾病特征的体外一致性支持 iPSC 作为发育性心脏缺陷的细胞模型的实用性。此外,这项研究支持将 iPSC 用作确定先天性心脏发病机制初始阶段的平台。