Suppr超能文献

基于区域厚度和表面积测量的人类皮质遗传网络特性

Genetic network properties of the human cortex based on regional thickness and surface area measures.

作者信息

Docherty Anna R, Sawyers Chelsea K, Panizzon Matthew S, Neale Michael C, Eyler Lisa T, Fennema-Notestine Christine, Franz Carol E, Chen Chi-Hua, McEvoy Linda K, Verhulst Brad, Tsuang Ming T, Kremen William S

机构信息

Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University Richmond, VA, USA.

Department of Psychiatry, University of California, San Diego San Diego, CA, USA ; Center for Behavioral Genomics Twin Research Laboratory, University of California, San Diego San Diego, CA, USA.

出版信息

Front Hum Neurosci. 2015 Aug 20;9:440. doi: 10.3389/fnhum.2015.00440. eCollection 2015.

Abstract

We examined network properties of genetic covariance between average cortical thickness (CT) and surface area (SA) within genetically-identified cortical parcellations that we previously derived from human cortical genetic maps using vertex-wise fuzzy clustering analysis with high spatial resolution. There were 24 hierarchical parcellations based on vertex-wise CT and 24 based on vertex-wise SA expansion/contraction; in both cases the 12 parcellations per hemisphere were largely symmetrical. We utilized three techniques-biometrical genetic modeling, cluster analysis, and graph theory-to examine genetic relationships and network properties within and between the 48 parcellation measures. Biometrical modeling indicated significant shared genetic covariance between size of several of the genetic parcellations. Cluster analysis suggested small distinct groupings of genetic covariance; networks highlighted several significant negative and positive genetic correlations between bilateral parcellations. Graph theoretical analysis suggested that small world, but not rich club, network properties may characterize the genetic relationships between these regional size measures. These findings suggest that cortical genetic parcellations exhibit short characteristic path lengths across a broad network of connections. This property may be protective against network failure. In contrast, previous research with structural data has observed strong rich club properties with tightly interconnected hub networks. Future studies of these genetic networks might provide powerful phenotypes for genetic studies of normal and pathological brain development, aging, and function.

摘要

我们研究了平均皮质厚度(CT)与表面积(SA)之间遗传协方差的网络属性,这些属性存在于我们之前通过具有高空间分辨率的逐顶点模糊聚类分析从人类皮质遗传图谱中得出的基因识别皮质分区内。基于逐顶点CT有24个层次分区,基于逐顶点SA扩展/收缩有24个层次分区;在这两种情况下,每个半球的12个分区在很大程度上是对称的。我们运用了三种技术——生物统计学遗传建模、聚类分析和图论——来研究48个分区测量值内部和之间的遗传关系及网络属性。生物统计学建模表明几个遗传分区大小之间存在显著的共享遗传协方差。聚类分析显示出遗传协方差的小的不同分组;网络突出了双侧分区之间的几个显著的负向和正向遗传相关性。图论分析表明小世界网络属性(而非富俱乐部网络属性)可能表征了这些区域大小测量值之间的遗传关系。这些发现表明皮质遗传分区在广泛的连接网络中呈现出短的特征路径长度。这一属性可能对防止网络故障具有保护作用。相比之下,先前对结构数据的研究观察到紧密互联的枢纽网络具有强大的富俱乐部网络属性。对这些遗传网络的未来研究可能为正常和病理性脑发育、衰老及功能的遗传研究提供强大的表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6aa/4542323/b2c1c9e5e11c/fnhum-09-00440-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验