Suppr超能文献

硫化还原石墨烯在饱和石英砂中的运移:阳离子依赖的滞留机制。

Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

机构信息

College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University , Tianjin 300071, China.

Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States.

出版信息

Environ Sci Technol. 2015 Oct 6;49(19):11468-75. doi: 10.1021/acs.est.5b02349. Epub 2015 Sep 16.

Abstract

We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems.

摘要

我们描述了环境相关途径还原氧化石墨烯(GO)如何影响其在多孔介质中的传输行为。一对分别用 0.1mM 的 Na2S 还原 10mg/L 的 GO 3 天和 5 天得到的硫化还原氧化石墨烯(RGOs),其迁移率低于原始 GO 在饱和石英砂中的迁移率。有趣的是,迁移率的降低不能简单归因于 GO 还原后疏水性和聚集性的增加,因为 RGOs 的保留机制高度依赖于阳离子。在 Na+(一种代表性的单价阳离子)存在下,主要的保留机制是在次级能量最小处沉积。然而,在 Ca2+(一种模型二价阳离子)存在下,RGO 和砂粒之间的阳离子桥接成为最主要的保留机制;这是因为硫化还原明显增加了 GO 上的羟基数量(一种强金属络合部分)。当 Na+是背景阳离子时,增加 pH(这会增加大的水化 Na+离子在颗粒表面上的积累)和存在苏万尼河腐殖酸(SRHA)会显著增强 RGO 的传输,主要是由于空间位阻。然而,当 Ca2+是背景阳离子时,pH 和 SRHA 的影响很小,因为它们都不会影响控制颗粒保留的阳离子桥接程度。这些发现强调了在水相系统中,非生物转化对 GO 的命运和传输的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验