Engel Dominique, Seutin Vincent
GIGA-Neurosciences, Neurophysiology Unit, University of Liège, SartTilman, B-4000, Liège, Belgium.
J Physiol. 2015 Nov 15;593(22):4905-22. doi: 10.1113/JP271052. Epub 2015 Oct 12.
The hyperpolarization-activated cation current Ih is expressed in dopamine neurons of the substantia nigra, but the subcellular distribution of the current and its role in synaptic integration remain unknown. We used cell-attached patch recordings to determine the localization profile of Ih along the somatodendritic axis of nigral dopamine neurons in slices from young rats. Ih density is higher in axon-bearing dendrites, in a membrane area close to the axon origin, than in the soma and axon-lacking dendrites. Dual current-clamp recordings revealed a similar contribution of Ih to the waveform of single excitatory postsynaptic potentials throughout the somatodendritic domain. The Ih blocker ZD 7288 increased the temporal summation in all dendrites with a comparable effect in axon- and non-axon dendrites. The strategic position of Ih in the proximity of the axon may influence importantly transitions between pacemaker and bursting activities and consequently the downstream release of dopamine.
Dendrites of most neurons express voltage-gated ion channels in their membrane. In combination with passive properties, active currents confer to dendrites a high computational potential. The hyperpolarization-activated cation current Ih present in the dendrites of some pyramidal neurons affects their membrane and integration properties, synaptic plasticity and higher functions such as memory. A gradient of increasing h-channel density towards distal dendrites has been found to be responsible for the location independence of excitatory postsynaptic potential (EPSP) waveform and temporal summation in cortical and hippocampal pyramidal cells. However, reports on other cell types revealed that smoother gradients or even linear distributions of Ih can achieve homogeneous temporal summation. Although the existence of a robust, slowly activating Ih current has been repeatedly demonstrated in nigral dopamine neurons, its subcellular distribution and precise role in synaptic integration are unknown. Using cell-attached patch-clamp recordings, we find a higher Ih current density in the axon-bearing dendrite than in the soma or in dendrites without axon in nigral dopamine neurons. Ih is mainly concentrated in the dendritic membrane area surrounding the axon origin and decreases with increasing distances from this site. Single EPSPs and temporal summation are similarly affected by blockade of Ih in axon- and non-axon-bearing dendrites. The presence of Ih close to the axon is pivotal to control the integrative functions and the output signal of dopamine neurons and may consequently influence the downstream coding of movement.
超极化激活的阳离子电流Ih在黑质多巴胺能神经元中表达,但该电流的亚细胞分布及其在突触整合中的作用尚不清楚。我们使用细胞贴附式膜片钳记录来确定幼鼠脑片中黑质多巴胺能神经元沿树突-胞体轴的Ih定位情况。在靠近轴突起始处的有轴突的树突膜区域,Ih密度高于胞体和无轴突的树突。双电流钳记录显示,在整个树突-胞体区域,Ih对单个兴奋性突触后电位波形的贡献相似。Ih阻断剂ZD 7288增加了所有树突中的时间总和,对有轴突和无轴突的树突具有类似的作用。Ih在轴突附近的关键位置可能对起搏器活动和爆发活动之间的转换产生重要影响,进而影响多巴胺的下游释放。
大多数神经元的树突在其膜上表达电压门控离子通道。与被动特性相结合,主动电流赋予树突较高的计算潜力。一些锥体神经元树突中存在的超极化激活阳离子电流Ih会影响其膜和整合特性、突触可塑性以及记忆等高级功能。已发现h通道密度向远端树突增加的梯度是皮质和海马锥体细胞中兴奋性突触后电位(EPSP)波形和时间总和位置独立性的原因。然而,关于其他细胞类型的报道显示,Ih的梯度更平缓甚至呈线性分布也能实现均匀的时间总和。尽管在黑质多巴胺能神经元中反复证明存在强大的、缓慢激活的Ih电流,但其亚细胞分布及其在突触整合中的精确作用尚不清楚。通过细胞贴附式膜片钳记录,我们发现黑质多巴胺能神经元中有轴突的树突中的Ih电流密度高于胞体或无轴突的树突。Ih主要集中在轴突起始处周围的树突膜区域,并随着与该部位距离的增加而降低。在有轴突和无轴突的树突中,Ih的阻断对单个EPSP和时间总和的影响相似。Ih在轴突附近的存在对于控制多巴胺能神经元的整合功能和输出信号至关重要,可能进而影响运动的下游编码。