Suppr超能文献

来自不可见晶体的α-突触核蛋白毒性核心结构。

Structure of the toxic core of α-synuclein from invisible crystals.

作者信息

Rodriguez Jose A, Ivanova Magdalena I, Sawaya Michael R, Cascio Duilio, Reyes Francis E, Shi Dan, Sangwan Smriti, Guenther Elizabeth L, Johnson Lisa M, Zhang Meng, Jiang Lin, Arbing Mark A, Nannenga Brent L, Hattne Johan, Whitelegge Julian, Brewster Aaron S, Messerschmidt Marc, Boutet Sébastien, Sauter Nicholas K, Gonen Tamir, Eisenberg David S

机构信息

Howard Hughes Medical Institute, UCLA-DOE Institute, Departments of Biological Chemistry and Chemistry and Biochemistry, Box 951570, UCLA, Los Angeles, California 90095-1570, USA.

Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA.

出版信息

Nature. 2015 Sep 24;525(7570):486-90. doi: 10.1038/nature15368. Epub 2015 Sep 9.

Abstract

The protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates that this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. The NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.

摘要

蛋白质α-突触核蛋白是路易小体的主要成分,路易小体是在帕金森病和其他神经退行性病变中出现的与神经元相关的聚集体。一个由11个残基组成的片段(我们称之为NACore)似乎是人类α-突触核蛋白淀粉样蛋白形成和细胞毒性的原因。在这里,我们描述了NACore的晶体,其尺寸小于可见光波长,因此在光学显微镜下不可见。由于这些晶体对于通过同步加速器X射线衍射确定结构来说太小了数千倍,我们使用微电子衍射来在原子分辨率下确定结构。1.4 Å分辨率的结构表明,这种方法可以确定以前未知的蛋白质结构,并且据我们所知,这里所获得的分辨率是迄今为止任何冷冻电子显微镜方法所达到的最高分辨率。该结构展示了由面对面的β-折叠对构成的原纤维。X射线纤维衍射图谱显示NACore与全长α-突触核蛋白的毒性纤维相似。NACore结构以及第二个片段的结构启发了一个关于有毒的全长α-突触核蛋白纤维大部分有序部分的模型,为设计α-突触核蛋白纤维抑制剂提供了机会。

相似文献

1
Structure of the toxic core of α-synuclein from invisible crystals.
Nature. 2015 Sep 24;525(7570):486-90. doi: 10.1038/nature15368. Epub 2015 Sep 9.
3
α-Synuclein Amyloid Fibrils with Two Entwined, Asymmetrically Associated Protofibrils.
J Biol Chem. 2016 Jan 29;291(5):2310-8. doi: 10.1074/jbc.M115.698787. Epub 2015 Dec 7.
4
Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy.
Cell Res. 2018 Sep;28(9):897-903. doi: 10.1038/s41422-018-0075-x. Epub 2018 Jul 31.
5
Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein.
Nat Struct Mol Biol. 2016 May;23(5):409-15. doi: 10.1038/nsmb.3194. Epub 2016 Mar 28.
6
Cryo-EM structure of alpha-synuclein fibrils.
Elife. 2018 Jul 3;7:e36402. doi: 10.7554/eLife.36402.
7
Characterization of fibrillation process of alpha-synuclein at the initial stage.
Biochem Biophys Res Commun. 2008 May 9;369(3):910-4. doi: 10.1016/j.bbrc.2008.02.127. Epub 2008 Mar 7.
8
Preparation of α-Synuclein Amyloid Assemblies for Toxicity Experiments.
Methods Mol Biol. 2018;1779:45-60. doi: 10.1007/978-1-4939-7816-8_4.
9
Parkinson's disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20305-20315. doi: 10.1073/pnas.1922741117. Epub 2020 Jul 31.
10
Cryo-EM structure of amyloid fibril formed by α-synuclein hereditary A53E mutation reveals a distinct protofilament interface.
J Biol Chem. 2023 Apr;299(4):104566. doi: 10.1016/j.jbc.2023.104566. Epub 2023 Mar 5.

引用本文的文献

2
Direct Observation of the Exciton-Polaron in Single CsPbBr Quantum Dots.
ACS Nano. 2025 Aug 12;19(31):28372-28382. doi: 10.1021/acsnano.5c06716. Epub 2025 Aug 2.
4
Direct from the Seed: An Atomic-Resolution Protein Structure by Ab Initio MicroED.
bioRxiv. 2025 Jul 5:2025.07.03.663097. doi: 10.1101/2025.07.03.663097.
5
Effect of hydrogen sulfide on alpha-synuclein aggregation and cell viability.
Sci Rep. 2025 May 4;15(1):15597. doi: 10.1038/s41598-025-99794-z.
7
Liganded magnetic nanoparticles for magnetic resonance imaging of α-synuclein.
NPJ Parkinsons Dis. 2025 Apr 23;11(1):88. doi: 10.1038/s41531-025-00918-z.
9
Unraveling atomic complexity from frozen samples.
Struct Dyn. 2025 Apr 18;12(2):020901. doi: 10.1063/4.0000303. eCollection 2025 Mar.
10
Targeted degradation of α-Synuclein using an evolved botulinum toxin protease.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2426745122. doi: 10.1073/pnas.2426745122. Epub 2025 Mar 24.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E1994-2003. doi: 10.1073/pnas.1421204112. Epub 2015 Apr 8.
3
Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3368-73. doi: 10.1073/pnas.1500724112. Epub 2015 Feb 17.
4
Structure of catalase determined by MicroED.
Elife. 2014 Oct 10;3:e03600. doi: 10.7554/eLife.03600.
5
High-resolution structure determination by continuous-rotation data collection in MicroED.
Nat Methods. 2014 Sep;11(9):927-930. doi: 10.1038/nmeth.3043. Epub 2014 Aug 3.
6
Protein structure determination by MicroED.
Curr Opin Struct Biol. 2014 Aug;27:24-31. doi: 10.1016/j.sbi.2014.03.004. Epub 2014 Apr 5.
7
Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.
Nat Methods. 2014 May;11(5):545-8. doi: 10.1038/nmeth.2887. Epub 2014 Mar 16.
8
Three-dimensional electron crystallography of protein microcrystals.
Elife. 2013 Nov 19;2:e01345. doi: 10.7554/eLife.01345.
9
10
New Python-based methods for data processing.
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1274-82. doi: 10.1107/S0907444913000863. Epub 2013 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验