Yamashita Tetsuji, Hakizimana Pierre, Wu Siva, Hassan Ahmed, Jacob Stefan, Temirov Jamshid, Fang Jie, Mellado-Lagarde Marcia, Gursky Richard, Horner Linda, Leibiger Barbara, Leijon Sara, Centonze Victoria E, Berggren Per-Olof, Frase Sharon, Auer Manfred, Brownell William E, Fridberger Anders, Zuo Jian
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
Department of Clinical and Experimental Medicine, Neuroscience, Linköping University, Linköping, Sweden; Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Science, Intervention, and Technology, M1, Karolinska University Hospital, Stockholm, Sweden.
PLoS Genet. 2015 Sep 9;11(9):e1005500. doi: 10.1371/journal.pgen.1005500. eCollection 2015 Sep.
Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.
自然界中速度最快的马达是耳蜗外毛细胞(OHCs)。这些感觉细胞利用一种膜蛋白Slc26a5(prestin)在高频下产生机械力,这对于解释哺乳动物耳朵极高的听力敏感度至关重要。先前的研究表明,Slc26a5在膜内持续扩散,但一个自由移动的马达蛋白如何能有效地传递对听力至关重要的力呢?为了在OHCs中为自由移动的Slc26a5分子提供直接证据,我们创建了一种敲入小鼠,其中Slc26a5与黄色荧光蛋白(YFP)融合。利用这些小鼠以及另外四种表达荧光标记膜蛋白的品系来检测它们在OHC侧壁中的横向扩散。所有这五种蛋白的扩散都极小,但在用胆固醇消耗剂和水杨酸盐对膜相关结构进行药理学破坏后确实发生了移动。因此,我们的结果表明,OHC侧壁结构限制了质膜蛋白的流动性,并且这种膜相关结构的完整性对于Slc26a5的活性和结构作用至关重要。膜蛋白的这种结构限制可能例证了跨物种细胞马达的趋同进化。我们的研究结果还提示了胆固醇代谢紊乱伴听力丧失(如尼曼-匹克C型病)的一种可能机制。