Suppr超能文献

基于成对旋转不变共配局部二值模式的研究。

Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2014 Nov;36(11):2199-213. doi: 10.1109/TPAMI.2014.2316826.

Abstract

Designing effective features is a fundamental problem in computer vision. However, it is usually difficult to achieve a great tradeoff between discriminative power and robustness. Previous works shown that spatial co-occurrence can boost the discriminative power of features. However the current existing co-occurrence features are taking few considerations to the robustness and hence suffering from sensitivity to geometric and photometric variations. In this work, we study the Transform Invariance (TI) of co-occurrence features. Concretely we formally introduce a Pairwise Transform Invariance (PTI) principle, and then propose a novel Pairwise Rotation Invariant Co-occurrence Local Binary Pattern (PRICoLBP) feature, and further extend it to incorporate multi-scale, multi-orientation, and multi-channel information. Different from other LBP variants, PRICoLBP can not only capture the spatial context co-occurrence information effectively, but also possess rotation invariance. We evaluate PRICoLBP comprehensively on nine benchmark data sets from five different perspectives, e.g., encoding strategy, rotation invariance, the number of templates, speed, and discriminative power compared to other LBP variants. Furthermore we apply PRICoLBP to six different but related applications-texture, material, flower, leaf, food, and scene classification, and demonstrate that PRICoLBP is efficient, effective, and of a well-balanced tradeoff between the discriminative power and robustness.

摘要

设计有效的特征是计算机视觉中的一个基本问题。然而,在判别能力和鲁棒性之间通常很难达到很好的折衷。以前的工作表明,空间共现可以提高特征的判别能力。然而,当前现有的共现特征很少考虑鲁棒性,因此容易受到几何和光度变化的影响。在这项工作中,我们研究了共现特征的变换不变性(TI)。具体来说,我们正式引入了一种成对变换不变性(PTI)原理,然后提出了一种新的成对旋转不变共现局部二值模式(PRICoLBP)特征,并进一步扩展它以纳入多尺度、多方向和多通道信息。与其他 LBP 变体不同,PRICoLBP 不仅可以有效地捕捉空间上下文共现信息,而且还具有旋转不变性。我们从五个不同的角度(例如,编码策略、旋转不变性、模板数量、速度和判别能力)全面评估了 PRICoLBP 与其他 LBP 变体的比较。此外,我们将 PRICoLBP 应用于六个不同但相关的应用领域——纹理、材料、花卉、叶片、食品和场景分类,并证明 PRICoLBP 是高效、有效且在判别能力和鲁棒性之间具有良好的折衷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验