Suppr超能文献

通过部件组装与拼接实现物体运动概要

Object Movements Synopsis via Part Assembling and Stitching.

作者信息

Nie Yongwei, Sun Hanqiu, Li Ping, Xiao Chunxia, Ma Kwan-Liu

出版信息

IEEE Trans Vis Comput Graph. 2014 Sep;20(9):1303-15. doi: 10.1109/TVCG.2013.2297931.

Abstract

Video synopsis aims at removing video's less important information, while preserving its key content for fast browsing, retrieving, or efficient storing. Previous video synopsis methods, including frame-based and object-based approaches that remove valueless whole frames or combine objects from time shots, cannot handle videos with redundancies existing in the movements of video object. In this paper, we present a novel part-based object movements synopsis method, which can effectively compress the redundant information of a moving video object and represent the synopsized object seamlessly. Our method works by part-based assembling and stitching. The object movement sequence is first divided into several part movement sequences. Then, we optimally assemble moving parts from different part sequences together to produce an initial synopsis result. The optimal assembling is formulated as a part movement assignment problem on a Markov Random Field (MRF), which guarantees the most important moving parts are selected while preserving both the spatial compatibility between assembled parts and the chronological order of parts. Finally, we present a non-linear spatiotemporal optimization formulation to stitch the assembled parts seamlessly, and achieve the final compact video object synopsis. The experiments on a variety of input video objects have demonstrated the effectiveness of the presented synopsis method.

摘要

视频概要旨在去除视频中不太重要的信息,同时保留其关键内容以便快速浏览、检索或高效存储。以前的视频概要方法,包括基于帧和基于对象的方法,这些方法去除无价值的完整帧或从时间镜头中组合对象,但无法处理视频对象运动中存在冗余的视频。在本文中,我们提出了一种新颖的基于部分的对象运动概要方法,该方法可以有效地压缩移动视频对象的冗余信息并无缝地表示概要对象。我们的方法通过基于部分的组装和拼接来工作。首先将对象运动序列划分为几个部分运动序列。然后,我们将来自不同部分序列的运动部分最佳地组装在一起,以产生初始概要结果。最佳组装被表述为马尔可夫随机场(MRF)上的部分运动分配问题,这保证了在保留组装部分之间的空间兼容性和部分的时间顺序的同时选择最重要的运动部分。最后,我们提出了一种非线性时空优化公式来无缝拼接组装部分,并实现最终紧凑的视频对象概要。对各种输入视频对象进行的实验证明了所提出的概要方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验