DuPont Jesse I, Henderson Kate L, Metz Amanda, Le Vu H, Emerson Joseph P, Lewis Edwin A
Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States.
Biochim Biophys Acta. 2016 May;1860(5):902-909. doi: 10.1016/j.bbagen.2015.09.004. Epub 2015 Sep 9.
The human telomere contains tandem repeat of (TTAGG) capable of forming a higher order DNA structure known as G-quadruplex. Porphyrin molecules such as TMPyP4 bind and stabilize G-quadruplex structure.
Isothermal titration calorimetry (ITC), circular dichroism (CD), and mass spectroscopy (ESI/MS), were used to investigate the interactions between TMPyP4 and the Co(III), Ni(II), Cu(II), and Zn(II) complexes of TMPyP4 (e.g. Co(III)-TMPyP4) and a model human telomere G-quadruplex (hTel22) at or near physiologic ionic strength ([Na(+)] or [K(+)]≈0.15M).
The apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 all formed complexes having a saturation stoichiometry of 4:1, moles of ligand per mole of DNA. Binding of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4 is described by a "four-independent-sites model". The two highest-affinity sites exhibit a K in the range of 10(8) to 10(10)M(-1) with the two lower-affinity sites exhibiting a K in the range of 10(4) to 10(5)M(-1). Binding of Co(III)-TMPyP4, and Zn(II)-TMPyP4, is best described by a "two-independent-sites model" in which only the end-stacking binding mode is observed with a K in the range of 10(4) to 10(5)M(-1).
In the case of apo-TMPyP4, Ni(II)-TMPyP4, and Cu(II)-TMPyP4, the thermodynamic signatures for the two binding modes are consistent with an "end stacking" mechanism for the higher affinity binding mode and an "intercalation" mechanism for the lower affinity binding mode. In the case of Co(III)-TMPyP4 and Zn(II)-TMPyP4, both the lower affinity for the "end-stacking" mode and the loss of the intercalative mode for forming the 2:1 complexes with hTel22 are attributed to the preferred metal coordination geometry and the presence of axial ligands.
The preferred coordination geometry around the metal center strongly influences the energetics of the interactions between the metallated-TMPyP4 and the model human telomeric G-quadruplex.
人类端粒包含(TTAGG)串联重复序列,能够形成一种称为G-四链体的高阶DNA结构。诸如TMPyP4之类的卟啉分子可结合并稳定G-四链体结构。
采用等温滴定量热法(ITC)、圆二色性(CD)和质谱法(ESI/MS),研究TMPyP4与TMPyP4的钴(III)、镍(II)、铜(II)和锌(II)配合物(如Co(III)-TMPyP4)以及在生理离子强度([Na⁺]或[K⁺]≈0.15M)或接近该强度时的人端粒G-四链体模型(hTel22)之间的相互作用。
脱辅基-TMPyP4、Ni(II)-TMPyP4和Cu(II)-TMPyP4均形成了配体与DNA摩尔比为4:1的饱和化学计量比的复合物。脱辅基-TMPyP4、Ni(II)-TMPyP4和Cu(II)-TMPyP4的结合可用“四个独立位点模型”来描述。两个高亲和力位点的K值范围为10⁸至10¹⁰M⁻¹,而两个低亲和力位点的K值范围为10⁴至10⁵M⁻¹。Co(III)-TMPyP4和Zn(II)-TMPyP4的结合最好用“两个独立位点模型”来描述,其中仅观察到末端堆积结合模式,K值范围为10⁴至10⁵M⁻¹。
对于脱辅基-TMPyP4、Ni(II)-TMPyP4和Cu(II)-TMPyP4,两种结合模式的热力学特征与高亲和力结合模式的“末端堆积”机制和低亲和力结合模式的“嵌入”机制一致。对于Co(III)-TMPyP4和Zn(II)-TMPyP4,“末端堆积”模式的较低亲和力以及与hTel22形成2:1复合物时嵌入模式的丧失均归因于优选的金属配位几何结构和轴向配体的存在。
金属中心周围优选的配位几何结构强烈影响金属化-TMPyP4与模型人端粒G-四链体之间相互作用的能量学。