Suppr超能文献

退偏均匀介质的微分穆勒矩阵及其与穆勒矩阵对数的关系。

Differential Mueller matrix of a depolarizing homogeneous medium and its relation to the Mueller matrix logarithm.

作者信息

Ossikovski Razvigor, De Martino Antonello

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2015 Feb 1;32(2):343-8. doi: 10.1364/JOSAA.32.000343.

Abstract

The different z-dependence and non-commutativity of the two components of the differential Mueller matrix of a homogeneous depolarizing medium prevent its formal identification with the Mueller matrix logarithm. By using a classic linear differential equation expansion, we advance a procedure for the extraction of the elementary polarization properties, in terms of mean values and variances-covariances, from the Mueller matrix logarithm. The approximate solution, based on the immediate identification of the differential matrix with the matrix logarithm, turns out to remain satisfactory up to relatively high depolarization levels. Physically interpreted experimental examples from the literature illustrate the formal developments.

摘要

均匀去极化介质的微分穆勒矩阵的两个分量具有不同的z相关性和非对易性,这使得它无法与穆勒矩阵对数进行形式上的识别。通过使用经典的线性微分方程展开,我们提出了一种从穆勒矩阵对数中提取基本偏振特性(以均值和方差-协方差表示)的方法。基于将微分矩阵直接识别为矩阵对数的近似解,在相对较高的去极化水平下仍然令人满意。文献中的物理解释实验示例说明了形式上的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验