Suppr超能文献

Computational study of radiation torque on arbitrary shaped particles with MLFMA.

作者信息

Yang Minglin, Ren Kuan Fang, Petkov Theodor, Pouligny Bernard, Loudet Jean-Christophe, Sheng Xinqing

出版信息

Opt Express. 2015 Sep 7;23(18):23365-79. doi: 10.1364/OE.23.023365.

Abstract

The surface integral equation (SIE) method is used for the computational study of radiation torque on arbitrarily shaped homogeneous particles. The Multilevel Fast Multipole Algorithm (MLFMA) is employed to reduce memory requirements and improve the capability of SIE. The resultant matrix equations are solved iteratively to obtain equivalent electric and magnetic currents. Then, radiation torque is computed using the vector flux of the pseudotensor over a spherical surface tightly enclosing the particle. We use, therefore, the analytical electromagnetic field expression for incident waves in the near region, instead of the far-field approximation. This avoids the error which may be caused when describing the incident beam. The numerical results of three kinds of non-spherical particles are presented to illustrate the validity and capability of the developed method. It is shown that our method can be applied to predict, in the rigorous sense, the torque from a beam of any shape on a particle of complex configuration with a size parameter as large as 650. The radiation torques on large ellipsoids are exemplified to show the performance of the method and to study the influence that different aspect ratios have on the results. Then, the code is used for the calculation of radiation torque on objects of complex shape including a biconcave cell-like particle and a motor with a non-smooth surface.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验