Suppr超能文献

Gad1信使核糖核酸作为下丘脑促食欲神经元中γ-氨基丁酸释放改变的可靠指标。

Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus.

作者信息

Dicken Matthew S, Hughes Alexander R, Hentges Shane T

机构信息

Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA.

出版信息

Eur J Neurosci. 2015 Nov;42(9):2644-53. doi: 10.1111/ejn.13076. Epub 2015 Oct 19.

Abstract

The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse.

摘要

γ-氨基丁酸(GABA)介导的抑制性突触输入强度是神经元活动的主要决定因素。然而,由于GABA传入输入的数量和突触位点存在差异,很难直接测定特定细胞之间GABA传递的改变。本研究检验了以下假设:GABA合成酶谷氨酸脱羧酶(GAD)的mRNA水平可以为GABA释放提供可靠的替代指标。这一假设在一个对能量平衡调节很重要的小鼠下丘脑回路中进行了测试。荧光原位杂交结果显示,禁食一夜后,下丘脑神经肽Y/刺鼠相关肽(NPY/AgRP)神经元中Gad1 mRNA(编码GAD67酶)的表达增加,这与这些神经元释放的GABA刺激食物摄入的能力一致。光遗传学研究证实,观察到的Gad1 mRNA增加与NPY/AgRP神经元向下游阿片促黑素细胞皮质素神经元释放GABA的概率增加相关。同样,NPY/AgRP神经元中易于释放的GABA池也增加了。对NPY/AgRP神经元中GAD活性的选择性抑制降低了GABA的释放,表明在很大程度上由表达水平决定的GAD67活性是GABA释放的关键决定因素。总之,Gad表达似乎可能是GABA能传递改变的可靠替代指标。当下游靶点未知或检测特定突触处GABA释放的工具有限时,将Gad mRNA的变化作为GABA释放的替代指标进行检测可能会特别有帮助。

相似文献

1
Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus.
Eur J Neurosci. 2015 Nov;42(9):2644-53. doi: 10.1111/ejn.13076. Epub 2015 Oct 19.
2
Caloric restriction selectively reduces the GABAergic phenotype of mouse hypothalamic proopiomelanocortin neurons.
J Physiol. 2017 Jan 15;595(2):571-582. doi: 10.1113/JP273020. Epub 2016 Oct 2.
3
The Relevance of AgRP Neuron-Derived GABA Inputs to POMC Neurons Differs for Spontaneous and Evoked Release.
J Neurosci. 2017 Aug 2;37(31):7362-7372. doi: 10.1523/JNEUROSCI.0647-17.2017. Epub 2017 Jun 30.
4
Hypothalamic Non-AgRP, Non-POMC GABAergic Neurons Are Required for Postweaning Feeding and NPY Hyperphagia.
J Neurosci. 2015 Jul 22;35(29):10440-50. doi: 10.1523/JNEUROSCI.1110-15.2015.
5
Estradiol Drives the Anorexigenic Activity of Proopiomelanocortin Neurons in Female Mice.
eNeuro. 2018 Oct 10;5(4). doi: 10.1523/ENEURO.0103-18.2018. eCollection 2018 Jul-Aug.
8
Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons.
PLoS One. 2013 Oct 29;8(10):e77622. doi: 10.1371/journal.pone.0077622. eCollection 2013.
9
GABAergic Inputs to POMC Neurons Originating from the Dorsomedial Hypothalamus Are Regulated by Energy State.
J Neurosci. 2019 Aug 14;39(33):6449-6459. doi: 10.1523/JNEUROSCI.3193-18.2019. Epub 2019 Jun 24.

引用本文的文献

2
Low-Glucose Culture Conditions Bias Neuronal Energetics Towards Oxidative Phosphorylation.
J Neurochem. 2025 Jun;169(6):e70125. doi: 10.1111/jnc.70125.
4
Abnormal Local Cortical Functional Connectivity due to Interneuron Dysmaturation after Neonatal Intermittent Hypoxia.
J Neurosci. 2025 Mar 19;45(12):e1449242024. doi: 10.1523/JNEUROSCI.1449-24.2024.
5
CellSP: Module discovery and visualization for subcellular spatial transcriptomics data.
bioRxiv. 2025 Apr 18:2025.01.12.632553. doi: 10.1101/2025.01.12.632553.
8
Intracellular spatial transcriptomic analysis toolkit (InSTAnT).
Nat Commun. 2024 Sep 6;15(1):7794. doi: 10.1038/s41467-024-49457-w.
10
Age-related Changes of GAD1 mRNA Expression in the Central Inferior Colliculus.
Transl Med Aging. 2023;7:20-32. doi: 10.1016/j.tma.2023.04.001. Epub 2023 Apr 21.

本文引用的文献

3
Genetic identification of a neural circuit that suppresses appetite.
Nature. 2013 Nov 7;503(7474):111-4. doi: 10.1038/nature12596. Epub 2013 Oct 13.
4
Cytosolic transmitter concentration regulates vesicle cycling at hippocampal GABAergic terminals.
Neuron. 2013 Oct 2;80(1):143-58. doi: 10.1016/j.neuron.2013.07.021.
6
Dynamic regulation of glycine-GABA co-transmission at spinal inhibitory synapses by neuronal glutamate transporter.
J Physiol. 2013 Aug 15;591(16):3821-32. doi: 10.1113/jphysiol.2012.250647. Epub 2013 May 20.
7
Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse.
J Neurosci. 2013 Mar 13;33(11):4768-81. doi: 10.1523/JNEUROSCI.5555-12.2013.
9
AgRP innervation onto POMC neurons increases with age and is accelerated with chronic high-fat feeding in male mice.
Endocrinology. 2013 Jan;154(1):172-83. doi: 10.1210/en.2012-1643. Epub 2012 Nov 16.
10
Deconstruction of a neural circuit for hunger.
Nature. 2012 Aug 9;488(7410):172-7. doi: 10.1038/nature11270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验