Suppr超能文献

经生物化学工程改造的基质细胞衍生因子1-α类似物可增加缺血后肢的灌注。

Biochemically engineered stromal cell-derived factor 1-alpha analog increases perfusion in the ischemic hind limb.

作者信息

Edwards Bryan B, Fairman Alexander S, Cohen Jeffrey E, MacArthur John W, Goldstone Andrew B, Woo Jeffrey B, Hiesinger William, Woo Y Joseph

机构信息

Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, Calif.

Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pa.

出版信息

J Vasc Surg. 2016 Oct;64(4):1093-9. doi: 10.1016/j.jvs.2015.06.140. Epub 2015 Sep 12.

Abstract

BACKGROUND

Despite promising therapeutic innovation over the last decade, peripheral arterial disease remains a prevalent morbidity, as many patients are still challenged with peripheral ischemia. We hypothesized that delivery of engineered stromal cell-derived factor 1-alpha (ESA) in an ischemic hind limb will yield significant improvement in perfusion.

METHODS

Male rats underwent right femoral artery ligation, and animals were randomized to receive a 100 μL injection of saline (n = 9) or 6 μg/kg dosage of equal volume of ESA (n = 12) into the ipsilateral quadriceps muscle. Both groups of animals were also given an intraperitoneal injection of 40 μg/kg of granulocyte macrophage colony-stimulating factor (GMCSF). Perfusion was quantified using a laser Doppler imaging device preoperatively, and on postoperative days 0, 7, and 14. Immunohistochemistry was performed to quantify angiogenesis on day 14, and an mRNA profile was evaluated for angiogenic and inflammatory markers.

RESULTS

Compared with the saline/GMCSF group at day 14, the ESA/GMCSF-injected animals had greater reperfusion ratios (Saline/GMCSF, 0.600 ± 0.140 vs ESA/GMCSF, 0.900 ± 0.181; group effect P = .006; time effect P < .0001; group×time effect P < .0001), elevated capillary density (10×; Saline/GMCSF, 6.40 ± 2.01 vs ESA/GMCSF, 18.55 ± 5.30; P < .01), and increased mRNA levels of vascular endothelial growth factor-A (Saline/GMCSF [n = 6], 0.298 ± 0.205 vs ESA/GMCSF [n = 8], 0.456 ± 0.139; P = .03).

CONCLUSIONS

Delivery of ESA significantly improves perfusion in a rat model of peripheral arterial disease via improved neovasculogenesis, a finding which may prove beneficial in the treatment strategy for this debilitating disease.

摘要

背景

尽管在过去十年中治疗方法有了令人期待的创新,但外周动脉疾病仍然是一种常见的病症,因为许多患者仍面临外周缺血的挑战。我们假设,在缺血后肢中递送工程化基质细胞衍生因子1-α(ESA)将显著改善灌注。

方法

雄性大鼠接受右股动脉结扎,动物被随机分为两组,一组在同侧股四头肌注射100μL生理盐水(n = 9),另一组注射等量体积的6μg/kg剂量的ESA(n = 12)。两组动物均腹腔注射40μg/kg的粒细胞巨噬细胞集落刺激因子(GMCSF)。术前以及术后第0、7和14天,使用激光多普勒成像设备对灌注进行定量。术后第14天进行免疫组织化学以量化血管生成,并评估血管生成和炎症标志物的mRNA谱。

结果

与第14天的生理盐水/GMCSF组相比,注射ESA/GMCSF的动物具有更高的再灌注率(生理盐水/GMCSF组为0.600±0.140,ESA/GMCSF组为0.900±0.181;组效应P = 0.006;时间效应P < 0.0001;组×时间效应P < 0.0001),毛细血管密度升高(10倍;生理盐水/GMCSF组为6.40±2.01,ESA/GMCSF组为18.55±5.30;P < 0.01),血管内皮生长因子-A的mRNA水平升高(生理盐水/GMCSF组[n = 6]为0.298±0.205,ESA/GMCSF组[n = 8]为0.456±0.139;P = 0.03)。

结论

在大鼠外周动脉疾病模型中,ESA的递送通过改善新生血管形成显著改善了灌注,这一发现可能对这种使人衰弱的疾病的治疗策略有益。

相似文献

1
Biochemically engineered stromal cell-derived factor 1-alpha analog increases perfusion in the ischemic hind limb.
J Vasc Surg. 2016 Oct;64(4):1093-9. doi: 10.1016/j.jvs.2015.06.140. Epub 2015 Sep 12.
4
Thrombin promotes arteriogenesis and hemodynamic recovery in a rabbit hindlimb ischemia model.
J Vasc Surg. 2009 Apr;49(4):1000-12. doi: 10.1016/j.jvs.2008.11.004. Epub 2009 Feb 14.
8
Neovasculogenic therapy to augment perfusion and preserve viability in ischemic cardiomyopathy.
Ann Thorac Surg. 2006 May;81(5):1728-36. doi: 10.1016/j.athoracsur.2005.12.015.
9
Therapeutic site selection is important for the successful development of collateral vessels.
J Vasc Surg. 2015 Jul;62(1):190-9. doi: 10.1016/j.jvs.2014.02.004. Epub 2014 Mar 14.
10
Effect of Diallyl Trisulfide on Ischemic Tissue Injury and Revascularization in a Diabetic Mouse Model.
J Cardiovasc Pharmacol. 2018 Jun;71(6):367-374. doi: 10.1097/FJC.0000000000000579.

引用本文的文献

2
The Expanding Armamentarium of Innovative Bioengineered Strategies to Augment Cardiovascular Repair and Regeneration.
Front Bioeng Biotechnol. 2021 Jun 1;9:674172. doi: 10.3389/fbioe.2021.674172. eCollection 2021.
3
Navigating the Crossroads of Cell Therapy and Natural Heart Regeneration.
Front Cell Dev Biol. 2021 May 11;9:674180. doi: 10.3389/fcell.2021.674180. eCollection 2021.

本文引用的文献

1
MicroRNA control of vascular endothelial growth factor signaling output during vascular development.
Arterioscler Thromb Vasc Biol. 2013 Feb;33(2):193-200. doi: 10.1161/ATVBAHA.112.300142.
2
Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis.
Basic Res Cardiol. 2013 Jan;108(1):310. doi: 10.1007/s00395-012-0310-4. Epub 2012 Nov 9.
3
Re-engineered stromal cell-derived factor-1α and the future of translatable angiogenic polypeptide design.
Trends Cardiovasc Med. 2012 Aug;22(6):139-44. doi: 10.1016/j.tcm.2012.07.010. Epub 2012 Aug 16.
6
Stromal-Cell-Derived Factor-1 (SDF-1)/CXCL12 as Potential Target of Therapeutic Angiogenesis in Critical Leg Ischaemia.
Cardiol Res Pract. 2012;2012:143209. doi: 10.1155/2012/143209. Epub 2012 Feb 22.
8
Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction.
J Am Coll Cardiol. 2011 Nov 29;58(23):2415-23. doi: 10.1016/j.jacc.2011.08.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验