Schliemann Benedikt, Treder Maximilian, Schulze Martin, Müller Viktoria, Vasta Sebastiano, Zampogna Biaggio, Herbort Mirco, Kösters Clemens, Raschke Michael J, Lenschow Simon
Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany.
Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University, Rome, Italy.
Arthroscopy. 2016 Jan;32(1):78-89. doi: 10.1016/j.arthro.2015.06.044. Epub 2015 Sep 11.
To kinematically and biomechanically compare 4 different types of tibial tunnel management in single-stage anterior cruciate ligament (ACL) revision reconstruction with the control: primary ACL reconstruction using a robotic-based knee testing setup.
Porcine knees and flexor tendons were used. One hundred specimens were randomly assigned to 5 testing groups: (1) open tibial tunnel, (2) bone plug technique, (3) biodegradable interference screw, (4) dilatation technique, and (5) primary ACL reconstruction. A robotic/universal force-moment sensor testing system was used to simulate the KT-1000 (MEDmetric, San Diego, CA) and pivot-shift tests. Cyclic loading and load-to-failure testing were performed.
Anterior tibial translation increased significantly with all of the techniques compared with the intact ACL (P < .05). In the simulated KT-1000 test, groups 2 and 3 achieved results equal to those of primary ACL reconstruction (P > .05). The open tunnel and dilated tunnel techniques showed significantly greater anterior tibial translation (P < .05). The results of the simulated pivot-shift test were in accordance with those of the KT-1000 test. No significant differences could be observed regarding stiffness or maximum load to failure. However, elongation was significantly lower in the primary ACL reconstruction group compared with groups 1 and 3 (P = .02 and P = .03, respectively).
Filling an incomplete and incorrect tibial tunnel with a press-fit bone plug or a biodegradable interference screw in a standardized laboratory situation provided initial biomechanical properties and knee stability comparable with those of primary ACL reconstruction. In contrast, the dilatation technique or leaving the malplaced tunnel open did not restore knee kinematics adequately in this model. Backup extracortical fixation should be considered because the load to failure depends on the extracortical fixation when an undersized interference screw is used for aperture fixation.
Our biomechanical results could help orthopaedic surgeons to optimize the results of primary ACL revision with incomplete, incorrect tunnel placement.
运用基于机器人的膝关节测试装置,对单阶段前交叉韧带(ACL)翻修重建中4种不同类型的胫骨隧道处理方式与对照组(初次ACL重建)进行运动学和生物力学比较。
使用猪膝关节和屈肌腱。100个标本被随机分配到5个测试组:(1)开放胫骨隧道;(2)骨栓技术;(3)可生物降解的干涉螺钉;(4)扩张技术;(5)初次ACL重建。采用机器人/通用力-力矩传感器测试系统模拟KT-1000(MEDmetric,圣地亚哥,加利福尼亚州)和轴移试验。进行循环加载和破坏载荷测试。
与完整ACL相比,所有技术的胫骨前移均显著增加(P < 0.05)。在模拟KT-1000试验中,第2组和第3组的结果与初次ACL重建相当(P > 0.05)。开放隧道和扩张隧道技术显示胫骨前移明显更大(P < 0.05)。模拟轴移试验的结果与KT-1000试验结果一致。在刚度或最大破坏载荷方面未观察到显著差异。然而,与第1组和第3组相比,初次ACL重建组的伸长率显著更低(分别为P = 0.02和P = 0.03)。
在标准化实验室条件下,用压配骨栓或可生物降解的干涉螺钉填充不完整和不正确的胫骨隧道,可提供与初次ACL重建相当的初始生物力学性能和膝关节稳定性。相比之下,在该模型中,扩张技术或让位置不当的隧道开放并不能充分恢复膝关节运动学。应考虑备用皮质外固定,因为当使用尺寸过小的干涉螺钉进行孔径固定时,破坏载荷取决于皮质外固定。
我们的生物力学结果可帮助骨科医生优化隧道放置不完整、不正确的初次ACL翻修结果。