Orazov Marat, Davis Mark E
Chemical Engineering, California Institute of Technology, Pasadena, CA 91125.
Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11777-82. doi: 10.1073/pnas.1516466112. Epub 2015 Sep 8.
Retro-aldol reactions have been implicated as the limiting steps in catalytic routes to convert biomass-derived hexoses and pentoses into valuable C2, C3, and C4 products such as glycolic acid, lactic acid, 2-hydroxy-3-butenoic acid, 2,4-dihydroxybutanoic acid, and alkyl esters thereof. Due to a lack of efficient retro-aldol catalysts, most previous investigations of catalytic pathways involving these reactions were conducted at high temperatures (≥160 °C). Here, we report moderate-temperature (around 100 °C) retro-aldol reactions of various hexoses in aqueous and alcoholic media with catalysts traditionally known for their capacity to catalyze 1,2-intramolecular carbon shift (1,2-CS) reactions of aldoses, i.e., various molybdenum oxide and molybdate species, nickel(II) diamine complexes, alkali-exchanged stannosilicate molecular sieves, and amorphous TiO2-SiO2 coprecipitates. Solid Lewis acid cocatalysts that are known to catalyze 1,2-intramolecular hydride shift (1,2-HS) reactions that enable the formation of α-hydroxy carboxylic acids from tetroses, trioses, and glycolaldehyde, but cannot readily catalyze retro-aldol reactions of hexoses and pentoses at these moderate temperatures, are shown to be compatible with the aforementioned retro-aldol catalysts. The combination of a distinct retro-aldol catalyst with a 1,2-HS catalyst enables lactic acid and alkyl lactate formation from ketohexoses at moderate temperatures (around 100 °C), with yields comparable to best-reported chemocatalytic examples at high temperature conditions (≥160 °C). The use of moderate temperatures enables numerous desirable features such as lower pressure and significantly less catalyst deactivation.
逆羟醛缩合反应被认为是将生物质衍生的己糖和戊糖转化为有价值的C2、C3和C4产物(如乙醇酸、乳酸、2-羟基-3-丁烯酸、2,4-二羟基丁酸及其烷基酯)的催化途径中的限速步骤。由于缺乏高效的逆羟醛缩合催化剂,此前大多数涉及这些反应的催化途径研究都是在高温(≥160℃)下进行的。在此,我们报道了在水性和醇性介质中,各种己糖在中温(约100℃)下的逆羟醛缩合反应,所使用的催化剂是传统上已知具有催化醛糖1,2-分子内碳迁移(1,2-CS)反应能力的物质,即各种氧化钼和钼酸盐、镍(II)二胺配合物、碱交换的锡硅酸盐分子筛以及无定形TiO2-SiO2共沉淀物。已知能催化1,2-分子内氢迁移(1,2-HS)反应(该反应能使四糖、三糖和乙醇醛形成α-羟基羧酸)但在这些中温下不能轻易催化己糖和戊糖逆羟醛缩合反应的固体路易斯酸助催化剂,被证明与上述逆羟醛缩合催化剂兼容。一种独特的逆羟醛缩合催化剂与1,2-HS催化剂的组合能够在中温(约100℃)下由己酮糖生成乳酸和乳酸烷基酯,产率与高温条件(≥160℃)下报道的最佳化学催化实例相当。使用中温具有许多理想的特性,如较低的压力和显著减少的催化剂失活。