Suppr超能文献

茎直径变化作为生态生理学中的一种通用研究工具。

Stem diameter variations as a versatile research tool in ecophysiology.

作者信息

De Swaef Tom, De Schepper Veerle, Vandegehuchte Maurits W, Steppe Kathy

机构信息

Plant Sciences Unit, Institute for Agricultural and Fisheries Research (ILVO), Caritasstraat 21, 9090 Melle, Belgium Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.

Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.

出版信息

Tree Physiol. 2015 Oct;35(10):1047-61. doi: 10.1093/treephys/tpv080. Epub 2015 Sep 15.

Abstract

High-resolution stem diameter variations (SDV) are widely recognized as a useful drought stress indicator and have therefore been used in many irrigation scheduling studies. More recently, SDV have been used in combination with other plant measurements and biophysical modelling to study fundamental mechanisms underlying whole-plant functioning and growth. The present review aims to scrutinize the important insights emerging from these more recent SDV applications to identify trends in ongoing fundamental research. The main mechanism underlying SDV is variation in water content in stem tissues, originating from reversible shrinkage and swelling of dead and living tissues, and irreversible growth. The contribution of different stem tissues to the overall SDV signal is currently under debate and shows variation with species and plant age, but can be investigated by combining SDV with state-of-the-art technology like magnetic resonance imaging. Various physiological mechanisms, such as water and carbon transport, and mechanical properties influence the SDV pattern, making it an extensive source of information on dynamic plant behaviour. To unravel these dynamics and to extract information on plant physiology or plant biophysics from SDV, mechanistic modelling has proved to be valuable. Biophysical models integrate different mechanisms underlying SDV, and help us to explain the resulting SDV signal. Using an elementary modelling approach, we demonstrate the application of SDV as a tool to examine plant water relations, plant hydraulics, plant carbon relations, plant nutrition, freezing effects, plant phenology and dendroclimatology. In the ever-expanding SDV knowledge base we identified two principal research tracks. First, in detailed short-term experiments, SDV measurements are combined with other plant measurements and modelling to discover patterns in phloem turgor, phloem osmotic concentrations, root pressure and plant endogenous control. Second, long-term SDV time series covering many different species, regions and climates provide an expanding amount of phenotypic data of growth, phenology and survival in relation to microclimate, soil water availability, species or genotype, which can be coupled with genetic information to support ecological and breeding research under on-going global change. This under-exploited source of information has now encouraged research groups to set up coordinated initiatives to explore this data pool via global analysis techniques and data-mining.

摘要

高分辨率的茎直径变化(SDV)被广泛认为是一种有用的干旱胁迫指标,因此已被用于许多灌溉调度研究中。最近,SDV已与其他植物测量方法和生物物理模型结合使用,以研究整株植物功能和生长的基本机制。本综述旨在审视这些最新SDV应用中出现的重要见解,以确定正在进行的基础研究的趋势。SDV的主要机制是茎组织中水分含量的变化,这源于死组织和活组织的可逆收缩和膨胀以及不可逆生长。目前,不同茎组织对整体SDV信号的贡献存在争议,并且随物种和植物年龄而变化,但可以通过将SDV与磁共振成像等先进技术相结合来进行研究。各种生理机制,如水和碳的运输以及机械性能,都会影响SDV模式,使其成为有关植物动态行为的广泛信息来源。为了揭示这些动态变化并从SDV中提取有关植物生理学或植物生物物理学的信息,机械建模已被证明是有价值的。生物物理模型整合了SDV背后的不同机制,并帮助我们解释由此产生的SDV信号。使用基本的建模方法,我们展示了SDV作为一种工具在研究植物水分关系、植物水力学、植物碳关系、植物营养、冻害影响、植物物候学和树木年轮气候学方面的应用。在不断扩大的SDV知识库中,我们确定了两条主要研究路径。第一,在详细的短期实验中,将SDV测量与其他植物测量和建模相结合,以发现韧皮部膨压、韧皮部渗透浓度、根压和植物内源控制方面的模式。第二,涵盖许多不同物种、地区和气候的长期SDV时间序列提供了与小气候、土壤水分可用性、物种或基因型相关的关于生长、物候和存活的越来越多的表型数据,这些数据可以与遗传信息相结合,以支持在持续的全球变化下的生态和育种研究。这种未充分利用的信息来源现在鼓励研究小组通过全球分析技术和数据挖掘建立协调一致的倡议,以探索这个数据库。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验