Wu Pei-Shien, Lin Min, Chow Shein-Chung
a Department of Biostatistics and Bioinformatics , Duke University School of Medicine , Durham , North Carolina , USA.
b Center for Biologics Evaluation and Research , U.S. Food and Drug Administration , Silver Spring , Maryland , USA.
J Biopharm Stat. 2016;26(1):44-54. doi: 10.1080/10543406.2015.1092031.
Sample size estimation (SSE) is an important issue in the planning of clinical studies. While larger studies are likely to have sufficient power, it may be unethical to expose more patients than necessary to answer a scientific question. Budget considerations may also cause one to limit the study to an adequate size to answer the question at hand. Typically at the planning stage, a statistically based justification for sample size is provided. An effective sample size is usually planned under a pre-specified type I error rate, a desired power under a particular alternative and variability associated with the observations recorded. The nuisance parameter such as the variance is unknown in practice. Thus, information from a preliminary pilot study is often used to estimate the variance. However, calculating the sample size based on the estimated nuisance parameter may not be stable. Sample size re-estimation (SSR) at the interim analysis may provide an opportunity to re-evaluate the uncertainties using accrued data and continue the trial with an updated sample size. This article evaluates a proposed SSR method based on controlling the variability of nuisance parameter. A numerical study is used to assess the performance of proposed method with respect to the control of type I error. The proposed method and concepts could be extended to SSR approaches with respect to other criteria, such as maintaining effect size, achieving conditional power, and reaching a desired reproducibility probability.
样本量估计(SSE)是临床研究规划中的一个重要问题。虽然较大规模的研究可能具有足够的检验效能,但让比回答科学问题所需更多的患者暴露于研究中可能是不道德的。预算方面的考虑也可能导致将研究限制在足以回答手头问题的规模。通常在规划阶段,会提供基于统计学的样本量理由。有效的样本量通常是在预先指定的I型错误率、特定备择假设下的期望检验效能以及与所记录观察值相关的变异性的基础上进行规划的。诸如方差等干扰参数在实际中是未知的。因此,来自初步预试验研究的信息通常用于估计方差。然而,基于估计的干扰参数计算样本量可能不稳定。在中期分析时进行样本量重新估计(SSR)可能提供一个机会,利用累积的数据重新评估不确定性,并以更新后的样本量继续试验。本文评估了一种基于控制干扰参数变异性的提议的SSR方法。通过数值研究来评估所提方法在控制I型错误方面的性能。所提方法和概念可扩展到关于其他标准的SSR方法,如维持效应量、实现条件检验效能以及达到期望的可重复性概率。