Suppr超能文献

利用杂交捕获分析深入了解长链非编码RNA生物学

Insight into lncRNA biology using hybridization capture analyses.

作者信息

Simon Matthew D

机构信息

Dept. of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06516, USA; Chemical Biology Institute, Yale West Campus, West Haven, CT, 06511, USA.

出版信息

Biochim Biophys Acta. 2016 Jan;1859(1):121-7. doi: 10.1016/j.bbagrm.2015.09.004. Epub 2015 Sep 14.

Abstract

Despite mounting evidence of the importance of large non-coding RNAs (lncRNAs) in biological regulation, we still know little about how these lncRNAs function. One approach to understand the function of lncRNAs is to biochemically purify endogenous lncRNAs from fixed cells using complementary oligonucleotides. These hybridization capture approaches can reveal the genomic localization of lncRNAs, as well as the proteins and RNAs with which they interact. To help researchers understand how these tools can uncover lncRNA function, this review discusses the considerations and influences of different parameters, (e.g., crosslinking reagents, oligonucleotide chemistry and hybridization conditions) and controls to avoid artifacts. By examining the application of these tools, this review will highlight the progress and pitfalls of studying lncRNAs using hybridization capture approaches.This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.

摘要

尽管越来越多的证据表明长链非编码RNA(lncRNA)在生物调控中具有重要作用,但我们对这些lncRNA的功能仍知之甚少。了解lncRNA功能的一种方法是使用互补寡核苷酸从固定细胞中生物化学纯化内源性lncRNA。这些杂交捕获方法可以揭示lncRNA的基因组定位,以及它们相互作用的蛋白质和RNA。为了帮助研究人员了解这些工具如何揭示lncRNA功能,本综述讨论了不同参数(例如交联试剂、寡核苷酸化学和杂交条件)的考虑因素和影响,以及避免假象的对照。通过研究这些工具的应用,本综述将突出使用杂交捕获方法研究lncRNA的进展和陷阱。本文是名为《长链非编码RNA分类线索1》特刊的一部分,由广濑哲郎博士和中川信一博士编辑。

相似文献

1
Insight into lncRNA biology using hybridization capture analyses.
Biochim Biophys Acta. 2016 Jan;1859(1):121-7. doi: 10.1016/j.bbagrm.2015.09.004. Epub 2015 Sep 14.
2
Bioinformatics tools for lncRNA research.
Biochim Biophys Acta. 2016 Jan;1859(1):23-30. doi: 10.1016/j.bbagrm.2015.07.014. Epub 2015 Aug 10.
3
Functions of plants long non-coding RNAs.
Biochim Biophys Acta. 2016 Jan;1859(1):155-62. doi: 10.1016/j.bbagrm.2015.06.009. Epub 2015 Jun 22.
4
The ins and outs of lncRNA structure: How, why and what comes next?
Biochim Biophys Acta. 2016 Jan;1859(1):46-58. doi: 10.1016/j.bbagrm.2015.08.009. Epub 2015 Aug 29.
5
Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome.
Biochim Biophys Acta. 2016 Jan;1859(1):3-15. doi: 10.1016/j.bbagrm.2015.10.010. Epub 2015 Oct 23.
6
Long noncoding RNAs: Lessons from genomic imprinting.
Biochim Biophys Acta. 2016 Jan;1859(1):102-11. doi: 10.1016/j.bbagrm.2015.05.006. Epub 2015 May 22.
7
Catching RNAs on chromatin using hybridization capture methods.
Brief Funct Genomics. 2018 Mar 1;17(2):96-103. doi: 10.1093/bfgp/elx038.
8
Lessons from reverse-genetic studies of lncRNAs.
Biochim Biophys Acta. 2016 Jan;1859(1):177-83. doi: 10.1016/j.bbagrm.2015.06.011. Epub 2015 Jun 24.
9
The specificity of long noncoding RNA expression.
Biochim Biophys Acta. 2016 Jan;1859(1):16-22. doi: 10.1016/j.bbagrm.2015.08.005. Epub 2015 Aug 19.
10
The long non-coding RNA world in yeasts.
Biochim Biophys Acta. 2016 Jan;1859(1):147-54. doi: 10.1016/j.bbagrm.2015.08.003. Epub 2015 Aug 8.

引用本文的文献

1
Comparative RNA Genomics.
Methods Mol Biol. 2024;2802:347-393. doi: 10.1007/978-1-0716-3838-5_12.
4
Decoding LncRNAs.
Cancers (Basel). 2021 May 27;13(11):2643. doi: 10.3390/cancers13112643.
6
The New Frontier of Functional Genomics: From Chromatin Architecture and Noncoding RNAs to Therapeutic Targets.
SLAS Discov. 2020 Jul;25(6):568-580. doi: 10.1177/2472555220926158. Epub 2020 Jun 2.
7
Genome-Wide Technologies to Study RNA-Chromatin Interactions.
Noncoding RNA. 2020 May 27;6(2):20. doi: 10.3390/ncrna6020020.
8
Seq'ing identity and function in a repeat-derived noncoding RNA world.
Chromosome Res. 2020 Mar;28(1):111-127. doi: 10.1007/s10577-020-09628-z. Epub 2020 Mar 7.
9
Endothelial function and dysfunction in the cardiovascular system: the long non-coding road.
Cardiovasc Res. 2019 Oct 1;115(12):1692-1704. doi: 10.1093/cvr/cvz154.
10
lncRedibly versatile: biochemical and biological functions of long noncoding RNAs.
Biochem J. 2019 Apr 10;476(7):1083-1104. doi: 10.1042/BCJ20180440.

本文引用的文献

1
Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation.
Science. 2015 Jul 17;349(6245). doi: 10.1126/science.aab2276. Epub 2015 Jun 18.
2
The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3.
Nature. 2015 May 14;521(7551):232-6. doi: 10.1038/nature14443. Epub 2015 Apr 27.
3
Systematic discovery of Xist RNA binding proteins.
Cell. 2015 Apr 9;161(2):404-16. doi: 10.1016/j.cell.2015.03.025. Epub 2015 Apr 2.
4
EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA.
Cell. 2015 Feb 12;160(4):607-618. doi: 10.1016/j.cell.2015.01.015. Epub 2015 Feb 5.
5
Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA.
Mol Cell. 2015 Feb 5;57(3):552-8. doi: 10.1016/j.molcel.2014.12.017. Epub 2015 Jan 15.
6
Technologies to probe functions and mechanisms of long noncoding RNAs.
Nat Struct Mol Biol. 2015 Jan;22(1):29-35. doi: 10.1038/nsmb.2921.
7
Discovery and annotation of long noncoding RNAs.
Nat Struct Mol Biol. 2015 Jan;22(1):5-7. doi: 10.1038/nsmb.2942.
9
Regulation of transcription by long noncoding RNAs.
Annu Rev Genet. 2014;48:433-55. doi: 10.1146/annurev-genet-120213-092323. Epub 2014 Sep 18.
10
The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites.
Mol Cell. 2014 Sep 4;55(5):791-802. doi: 10.1016/j.molcel.2014.07.012. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验