Das Chinmoy, Vaidya Shefali, Gupta Tulika, Frost Jamie M, Righi Mattia, Brechin Euan K, Affronte Marco, Rajaraman Gopalan, Shanmugam Maheswaran
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076 (India).
EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ (UK).
Chemistry. 2015 Oct 26;21(44):15639-50. doi: 10.1002/chem.201502720. Epub 2015 Sep 18.
Three cationic [Ln4 ] squares (Ln=lanthanide) were isolated as single crystals and their structures solved as [Dy4 (μ4 -OH)(HL)(H2 L)3 (H2 O)4 ]Cl2 ⋅(CH3 OH)4 ⋅(H2 O)8 (1), [Tb4 (μ4 -OH)(HL)(H2 L)3 (MeOH)4 ]Cl2 ⋅(CH3 OH)4 ⋅(H2 O)4 (2) and [Gd4 (μ4 -OH)(HL)(H2 L)3 (H2 O)2 (MeOH)2 ]Br2 ⋅(CH3 OH)4 ⋅(H2 O)3 (3). The structures are described as hydroxo-centered squares of lanthanide ions, with each edge of the square bridged by a doubly deprotonated H2 L(2-) ligand. Alternating current magnetic susceptibility measurements show frequency-dependent out-of-phase signals with two different thermally assisted relaxation processes for 1, whereas no maxima in χM " appears above 2.0 K for complex 2. For 1, the estimated effective energy barrier for these two relaxation processes is 29 and 100 K. Detailed ab initio studies reveal that complex 1 possesses a toroidal magnetic moment. The ab initio calculated anisotropies of the metal ions in complex 1 were employed to simulate the magnetic susceptibility by using the Lines model (POLY_ANISO) and this procedure yields J1 =+0.01 and J2 =-0.01 cm(-1) for 1 as the two distinct exchange interactions between the Dy(III) ions. Similar parameters are also obtained for complex 1 (and 2) from specific heat measurements. A very weak antiferromagnetic super-exchange interaction (J1 =-0.043 cm(-1) and g=1.99) is observed between the metal centers in 3. The magnetocaloric effect (MCE) was estimated by using field-dependent magnetization and temperature-dependent heat-capacity measurements. An excellent agreement is found for the -ΔSm values extracted from these two measurements for all three complexes. As expected, 3 shows the largest -ΔSm variation (23 J Kg(-1) K(-1) ) among the three complexes. The negligible magnetic anisotropy of Gd indeed ensures near degeneracy in the (2S+1) ground state microstates, and the weak super-exchange interaction facilitates dense population of low-lying excited states, all of which are likely to contribute to the MCE, making complex 3 an attractive candidate for cryogenic refrigeration.
三种阳离子[Ln₄]正方形(Ln = 镧系元素)被分离为单晶,并解析出它们的结构为[Dy₄(μ₄ -OH)(HL)(H₂L)₃(H₂O)₄]Cl₂⋅(CH₃OH)₄⋅(H₂O)₈ (1)、[Tb₄(μ₄ -OH)(HL)(H₂L)₃(MeOH)₄]Cl₂⋅(CH₃OH)₄⋅(H₂O)₄ (2) 和 [Gd₄(μ₄ -OH)(HL)(H₂L)₃(H₂O)₂(MeOH)₂]Br₂⋅(CH₃OH)₄⋅(H₂O)₃ (3)。这些结构被描述为以羟基为中心的镧系离子正方形,正方形的每条边由双去质子化的H₂L(2-)配体桥连。交流磁化率测量显示,对于1,频率相关的异相信号具有两种不同的热辅助弛豫过程,而对于配合物2,在2.0 K以上χM"没有最大值。对于1,这两种弛豫过程的估计有效能垒分别为29 K和100 K。详细的从头算研究表明配合物1具有环形磁矩。利用Lines模型(POLY_ANISO),通过配合物1中金属离子的从头算计算各向异性来模拟磁化率,此过程得出1的J₁ = +0.01和J₂ = -0.01 cm⁻¹,作为Dy(III)离子之间的两种不同交换相互作用。从比热测量中也得到了配合物1(和2)的类似参数。在3中观察到金属中心之间存在非常弱的反铁磁超交换相互作用(J₁ = -0.043 cm⁻¹和g = 1.99)。通过场依赖磁化和温度依赖热容量测量来估计磁热效应(MCE)。对于所有三种配合物,从这两种测量中提取的-ΔSm值之间发现了极好的一致性。正如预期的那样,3在三种配合物中显示出最大的-ΔSm变化(23 J Kg⁻¹ K⁻¹)。Gd可忽略不计的磁各向异性确实确保了(2S + 1)基态微态近乎简并,并且弱超交换相互作用促进了低激发态的密集填充,所有这些都可能对MCE有贡献,使得配合物3成为低温制冷的有吸引力的候选物。