School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta 30332, Georgia United States.
Nano Lett. 2015 Oct 14;15(10):6939-45. doi: 10.1021/acs.nanolett.5b02880. Epub 2015 Sep 25.
The vapor-liquid-solid (VLS) mechanism enables the bottom-up, or additive, growth of semiconductor nanowires. Here, we demonstrate a reverse process, whereby catalyst atoms are selectively removed from the eutectic catalyst droplet. This process, which is driven by the dicarbonyl precursor 2,3-butanedione, results in axial nanowire etching. Experiments as a function of substrate temperature, etchant flow rate, and nanowire diameter support a solid-liquid-vapor (SLV) mechanism. An etch model with reaction at the liquid-vapor interface as the rate-limiting step is consistent with our experiments. These results identify a new mechanism to in situ tune the concentration of semiconductor atoms in the catalyst droplet.
汽-液-固(VLS)机制能够实现半导体纳米线的自下而上的(即添加式的)生长。在此,我们展示了一个相反的过程,其中通过二羰基前体 2,3-丁二酮将催化剂原子从共晶催化剂液滴中选择性地去除。这个过程是由二羰基前体 2,3-丁二酮驱动的,导致轴向纳米线刻蚀。作为衬底温度、蚀刻剂流速和纳米线直径函数的实验支持了固-液-汽(SLV)机制。以在液-汽界面处进行反应作为限速步骤的刻蚀模型与我们的实验一致。这些结果确定了一种新的机制,可以在原位调节催化剂液滴中半导体原子的浓度。