Sreedhar Remya, Arumugam Somasundaram, Thandavarayan Rajarajan A, Giridharan Vijayasree V, Karuppagounder Vengadeshprabhu, Pitchaimani Vigneshwaran, Afrin Rejina, Harima Meilei, Nakamura Masahiko, Suzuki Kenji, Gurusamy Narasimman, Krishnamurthy Prasanna, Watanabe Kenichi
Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956 8603, Japan.
Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956 8603, Japan; Department of Cardiovascular Sciences, Houston Methodist Research Center, Houston 77087, TX, USA.
Int J Cardiol. 2016 Jan 1;202:146-53. doi: 10.1016/j.ijcard.2015.08.142. Epub 2015 Aug 24.
BACKGROUND/OBJECTIVES: 14-3-3η protein, a dimeric phosphoserine-binding protein, provides protection against adverse cardiac remodeling during pressure-overload induced heart failure in mice. To identify its role in myocardial infarction (MI), we have used mice with cardio-specific expression of dominant-negative 14-3-3η protein mutant (DN14-3-3) and performed the surgical ligation of left anterior descending coronary artery.
We have performed echocardiography to assess cardiac function, protein expression analysis using Western blotting, mRNA expression by real time-reverse transcription polymerase chain reaction and histopathological analyses.
DN14-3-3 mice with MI displayed reduced survival, left ventricular ejection fraction and fractional shortening. Interestingly, DN14-3-3 mice subjected to MI showed increased cardiac hypertrophy, inflammation, fibrosis and apoptosis as compared to their wild-type counterparts. Mechanistically, DN14-3-3 mice with MI exhibited activation of endoplasmic reticulum (ER) stress and markers of maladaptive cardiac remodeling. Cardiac regeneration marker expression also decreased drastically in the DN14-3-3 mice with MI.
Depletion of the 14-3-3η protein causes cardiac dysfunction and reduces survival in mice with MI, probably via exacerbation of ER stress and death signaling pathways and suppression of cardiac regeneration. Thus, identification of drugs that can modulate cardiac 14-3-3η protein levels may probably provide a novel protective therapy for heart failure.
背景/目的:14-3-3η蛋白是一种二聚体磷酸丝氨酸结合蛋白,在小鼠压力超负荷诱导的心力衰竭过程中,可提供保护以防止不良心脏重塑。为了确定其在心肌梗死(MI)中的作用,我们使用了心脏特异性表达显性负性14-3-3η蛋白突变体(DN14-3-3)的小鼠,并对左冠状动脉前降支进行了手术结扎。
我们进行了超声心动图检查以评估心脏功能,使用蛋白质印迹法进行蛋白质表达分析,通过实时逆转录聚合酶链反应进行mRNA表达分析以及组织病理学分析。
患有MI的DN14-3-3小鼠生存率降低,左心室射血分数和缩短分数降低。有趣的是,与野生型小鼠相比,患有MI的DN14-3-3小鼠心脏肥大、炎症、纤维化和细胞凋亡增加。从机制上讲,患有MI的DN14-3-3小鼠表现出内质网(ER)应激激活和适应性不良心脏重塑的标志物。在患有MI的DN14-3-3小鼠中,心脏再生标志物表达也急剧下降。
14-3-3η蛋白的缺失导致心脏功能障碍并降低MI小鼠的生存率,可能是通过加剧ER应激和死亡信号通路以及抑制心脏再生。因此,鉴定能够调节心脏14-3-3η蛋白水平的药物可能为心力衰竭提供一种新的保护性治疗方法。